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1 Introduction 

1.1 Background 

Cycling is a sustainable mode of travel and an alternative to motor vehicle trips, particularly for 

shorter trips (less than 5km).  While promoting more cycling is likely to bring many benefits, the risk 

and consequences of having a crash while cycling is typically higher than while travelling as a driver 

or passenger in a motor vehicle. However, research by Turner et al (2006) demonstrates that a 

‘safety in numbers’ effect for cyclists is commonly seen. At the traffic signals, roundabouts and mid-

block sections considered in the research, the crash risk per cyclist reduced at higher cycle volumes. 

For several of the models, the crash risk per cyclist at high average daily traffic cycle volumes was 

several magnitudes lower than at low volumes. 

While this is reassuring, it remains that when a motor vehicle driver or passenger chooses to switch 

to cycling, their crash risk will generally increase, particularly when travelling on low-volume cycle 

routes or high-volume motor vehicle routes. 

The challenge is to create an environment for cyclists that are as safe as possible. This can be 

achieved through a series of measures, including, where practical, reducing traffic volumes and 

speeds on high cycle volume routes, building on-roadway cycle lanes and intersection facilities, and 

constructing off-roadway cycle paths. The safety benefit of most of these measures has not been 

adequately quantified.   

1.2 Purpose and Objectives of Project 

The purpose of this research is to start to establish the relationship between cycle versus motor-

vehicle crashes with predictor variables, including traffic volume, cycle volume, site layout and for 

some situations operating speed for Queensland.  Such relationships have already been developed 

for New Zealand and for traffic signals in Adelaide.  To produce robust models large sample sizes of 

each site type (traffic signals, roundabouts and mid-block sections) are required.  At this stage only 

limited data is available for Queensland sites so the method selected builds on the previous research 

by adding this data to a larger sample set.  Calibration factors for Queensland can then be 

developed. 

This research is necessary, as many road safety specialists expect that a large mode shift from 

motor vehicles to cycling will lead to a significant increase in crashes. The research by Turner et al 

(2006) shows that a ‘safety in numbers’ effect occurs and that the crash risk drops significantly as 

cycle volumes increase. However, in most cases, the crash risk still remains higher than that of 

motor vehicle drivers and passengers. This research helps us in understanding what the impact of 

increased cycling has on crash occurrence and what might be required to mitigate the increased risk. 
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2 Sample Size and Predictor Variables 
This section discusses the site selection process; the location and types of traffic signals, 

roundabouts and mid-block sections included in the sample set; and the collection of motor vehicle 

and cyclists counts, crash data, road layout, including cycle facilities, and other variables such as 

operating speed.   

2.1 Site Selection 

The research team had access to an existing sample set of roundabouts, traffic signals and mid-

block sections that was collected in three previous studies. The majority of the existing sites are 

from cities across New Zealand.  Traffic signal data was also available from Adelaide.  A number of 

additional sites were added from Queensland to increase the sample size and to allow a Queensland 

calibration factor to be added.  It was anticipated that a larger sample size of Queensland sites 

would be available, so more robust calibration factors could be developed. 

2.2 Selection Criteria 

While a wide variety of operational and layout features were included in the sample set, sites that 

had been constructed within the last five years or had undergone significant modification during this 

period were excluded, as their crash history over the last five years would not be representative. The 

broader selection criteria were: 

 at least five years since installation 

 all approaches two-way 

 standard layout, generally in accordance with Austroads design standards 

 urban speed limits only (70km/h or less). 

2.3 Sample Size 

Experience in other studies of this type indicates that a sample set of at least 100 sites for each site 

is the minimum necessary to develop crash prediction models for the major crash types.  In total, a 

sample set of 115 traffic signals, 119 roundabouts and 110 mid-block sections were available across 

Queensland, New Zealand and South Australia (Adelaide). Table1 shows a breakdown of the sites by 

location and site type.  

  

Type New Zealand South 

Australia 

Queensland Total 

Intersections 

Total 

Approaches 

Mid-block 97  13 110  

Roundabout 104  15 119 401 

Traffic Signals 56 46 13 115 430 

TOTAL 257 46 41 344  

Table 1 – Sample Size by Jurisdiction and Site Type 

Table 2 shows a break-down of the roundabout sites in New Zealand by city, number of legs and 

number of circulating arms.  This shows that there is a fair amount of variability in the types of 

roundabouts that are included in study.  As expected, the majority of roundabouts have four arms 

and that there are more single lane roundabouts than multi-lane roundabouts.   
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 Type Location 

Christchurch Auckland 
Palmerston 

North 
Total 

Single-lane circulating 

three-arm – 2 2 4 

four-arm 35 22 8 65 

Two-lane circulating 

three-arm – 4 – 4 

four-arm 4 21 3 28 

five-arm – 3 – 3 

TOTAL 39 52 13 104 

Table 2 New Zealand Roundabout locations and types 

3 Predictor Variables  

3.1.1 Motor vehicle counts 

The flow variables used in the intersection models (traffic signals and roundabouts) were first 

defined for four-arm intersection in Turner (1995).  

Each vehicle movement is numbered in a clockwise direction starting at the northernmost approach. 

Approaches are also numbered using the same technique and are numbered in a clockwise direction 

(see figure 1). 

Table 3 shows the range in traffic and cycle approach (or circulating) flows for each intersection 

type.  The cycle flow at roundabouts is circulating cyclists as they are the key cycle flow variable for 

entering versus circulating cycle crashes.   

 

Type Traffic Flow Cycle Flow 

Minimum Mean Maximum Minimum Mean Maximum 

Mid-blocks# 1,898 23,450 45,000 9 249 1,200 

Roundabout 64 5,993 30,303 0 38 615 

Traffic Signals 43 11,190 32,595 0 137 855

# Two-way flows on mid-blocks  

Table 3 – Traffic and cycle flow ranges for each site type 
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Figure 1 Numbering convention for movements and approaches 

Individual movements are denoted as a lower case character for the user type (eg qi). Totals of 

various movements are denoted with an upper case character (eg Qi). Models are developed for each 

approach and are defined using the totals of various movements. These are: 

Qe entering volume for each approach 

Qc circulating flow perpendicular to the entering flow (for roundabouts) 

Qa approach flow (the sum of the entering and exiting flows for each approach). 

All volume counts were factored up to the annual average daily traffic using the weekly, daily and 

hourly correction factors given in the Guide to estimation and monitoring of traffic counting and 

traffic growth (Traffic Design Group 2001). The hourly factors were calculated from flow profiles for 

the different road types.  It is unclear how well these New Zealand profiles relate to those in 

Australia.  The use of or development of such factors for each Australian jurisdiction would be a 

useful next step in developing better crash mdoels.   

For midblock sections the traffic volume is the two way traffic count normally collected using 

automated traffic counters.  These counts are normally of longer duration, often a week, and so 

require less factoring than the manual counts collected at intersections. 

North 

6 
5 

4 
3 

1 2 

Approach 1 

Approach 2 Approach 3 

North 

6 
5 

4 

3 1
2 

Approach 1 

Approach 2 

Approach 3 

Approach 4 

8 
9 

12

11

10

7 

1

3 2 

4

5

6
7 8

20 

19 
18 17 

10 
9

11 
12 

15 

14 

13 

16 

North 

Approach 1 

Approach 2 

Approach 3 Approach 4 

Approach 5 



Queensland Cycle Crash Models 

  

 

Beca // 3 October 2013 // Page 6
 // AU1-1069159-1  0.1 

 

3.1.2 Cyclist counts 

Manual cyclist movement counts have been collected at most intersection sites for the morning and 

evening peaks, and at mid-day. Like motor vehicle counts, daily and hourly correction factors were 

used to estimate annual averaged daily volumes. Seasonal factors were also applied. In New Zealand 

these took into account the secondary school terms and holidays. Three separate profiles were used. 

These were applied based on the location of the intersection and the vicinity of schools. The three 

profiles were ‘commuter’, ‘school/off-road’ and a combination of both. The commuter profile was 

always used for dual-lane roundabouts, as it was not expected that many school cyclists would travel 

through these. These factors are updated versions of those found in the Cycle network and route 

planning guide (Land Transport New Zealand 2004).  In Queensland and Adelaide the cycle counts 

were adjusted using local scaling factors.  

The cyclist flow variables are defined by movement in the same way that motor vehicle movements 

are defined: they are numbered in a clockwise direction at intersections, starting at the 

northernmost approach. Individual cyclist movements are denoted as a lower case character for the 

user type (eg ci). Totals of various movements are denoted with an upper case character (eg Ci).  

Midblock cycle counts have been developed from intersection counts or taken from mid-block 

counts, some of which are longer duration automatic counters. 

3.1.3 Intersection layout and other variables 

Data on the layout of each intersection was collected on site. This included such items as: 

 road markings 

 diameter of roundabouts 

 pedestrian and cycle facilities provided 

 presence and utilisation of parking (mid-block) 

 presence of central painted (or flush) median (mid-block) 

 surrounding land use 

 features that obstruct visibility 

 approach and circulating speeds at roundabouts. 

Further details on the range in the intersection layout and other variables, eg. travel speed, follow.  

For midblock a total of 27 routes out of 110 had a flush or painted island.   

Table 4 shows the distribution in the measured approach (or entering) speed of roundabouts. 

 

Jurisdiction Minimum (kph) Mean (kph) Maximum (kph) 

New Zealand 15 27 49 

Queensland 20 30 45 

TOTAL 15 28 49 

Table 4 – Approach speed distribution at Roundabouts 

Table 5 shows the proportion of traffic signal approaches for which each cycle facility or other layout 

variable applied for each jurisdiction. 
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Type of 

Treatment 

New Zealand South Australia Queensland 

 Number Proportion Number Proportion Number Proportion 

Cycle Storage Box 82 38% 59 36% 15 31% 

Approach cycle 

lane 

85 39% 90 55% 18 37% 

Painted cycle lane 37 17% 0 0% 6 12% 

LT cycle transition 

treatment 

87 40% 90 55% 18 37% 

Shared left and 

through lane 

121 56% 40 25% 20 41% 

Shared Right Turn 61 28% 21 13% 8 16% 

RT protection 

phase 

34 16% 143 88% 26 53% 

Free left turn 26 12% 96 59% 9 18% 

Table 5 – Approaches with various cycle and layout features at traffic signals 

Table 5 generally shows that the Queensland and New Zealand traffic signals have a similar 

proportion of sites/approaches with cycle facilities and the other variables that might impact on 

cycle safety.  The major difference being the proportion of approaches with right turn protections 

being much lower in Christchurch.  In general Christchurch has a lower use of right turn protection 

than other New Zealand cities, and it appears Australian cities.  The characteristics of the South 

Australian signalised intersections are quite different than the other intersections.  All of the South 

Australian intersections are on State or National Highways, so are typically multi-lane roads, which is 

reflected in the higher proportion of free left turns, low proportion of shared left turn lanes and 

higher proportion of approaches with left turn cycle lane transition treatments.   
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4 Crash Modelling Methods 

4.1 Introduction 

The aim of crash prediction modelling in this case is to develop relationships between crashes (by 

type) and flow predictor variables (traffic and cycle flows) and the non-flow predictor variables, such 

as road width, cycle facility provision, presence of parking and operating speed.  

The models are called “generalised linear models” and typically have a negative binomial or Poisson 

error structure. Generalised linear models were first introduced to modern road crash studies by 

Maycock and Hall (1984) and extensively developed in Hauer et al (1989). These models were further 

developed and fitted using crash data and traffic counts in the New Zealand context for motor 

vehicle only crashes by Turner (1995). 

Over recent years, the process has been refined to allow for incorporating non-flow variables, which 

allow different functional forms, improved goodness of fit statistics and the selection of ‘preferred’ 

models.  This chapter outlines the current modelling process used, which is: 

 selecting the correct functional form for model parameters 

 fitting crash prediction models 

 selecting models for goodness of fit testing 

 testing goodness of fit and selecting preferred models 

 interpreting crash relationships and significance. 

4.2 Selecting Correct Functional Form 

When crash prediction models were developed for conflicting flow-only variables, only one model 

was generally developed for each crash type. The form of the functional form of the crash model was 

assumed to be a power function as shown in equation 3.1. 

 2
2

1
10

bb xxbA   (Equation 3.1) 

However, with the inclusion of non-flow variables and the realisation that a power function may not 

always be appropriate, a tool was needed to determine potential functional forms for all predictor 

variables being included in the model. Also, if the functional form does not match the relationship 

between the predictor variable and crashes then the fit of the model is likely to be poor and the 

model may be misleading, particularly over certain ranges of the variable. Hauer and Bamfo’s (1997) 

integrate-differentiate method is such a tool that assists in identifying possible functional forms. 

The integrate-differentiate method has been used in this study with three different functional forms; 

these were: power functions (equation 3.2), exponential functions (equation 3.3) and Hoerl’s 

functions (equation 3.4). 

 1
10
bxbA   (Equation 3.2) 

 11
0

bxebA   (Equation 3.3) 

 211
10

bxb exbA   (Equation 3.4) 

where: 

   A =    annual mean number of crashes 
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   x1  =  continuous flow or non-flow variable 

   b0, b1 and b2  =  model parameters.   

4.3 Fitting Crash Prediction Model Parameters 

Once the functional form for each variable has been determined, generalised linear models can then 

be developed using either a negative binomial or Poisson distribution error structure.  Software has 

been developed in Minitab in order to fit such models (ie to estimate the model coefficients).  This 

can be readily done, however, in many commercial packages, eg GENSTAT, LIMDEP or SAS. 

4.4 Adding Variables To The Models 

Given the large number of possible variables for inclusion in the models for a particular crash type, a 

criterion is needed to decide when the addition of a new variable is worthwhile.  This balances the 

inevitable increase in the maximum likelihood (ML) of the data against the addition of a new variable 

(where p is the number of variables included in the model and n is the total number of observations 

in the sample set). We chose to use the popular Bayesian Information Criterion (BIC). We stop adding 

variables when the BIC reaches its lowest point. The BIC is given by equation 3.5. 

 BIC = (-2ln(ML) + pln(n))/n (Equation 3.5) 

The model with the lowest BIC is typically the preferred model. Addition of a new variable to a model 

generally provides an improved fit, though this may be slight and may therefore not reduce the BIC. 

In figure 2, the BIC values indicate that the parsimonious number of parameters is two.  However, if 

the analyst considers that a model with three parameters includes an important variable that the 

model with two parameters does not, then he/she could justifiably select the model with three 

parameters, depending on the outcome of goodness of fit testing (see section 3.5). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2 Graph used to determine the number of parameters yielding the optimal BIC 

Modelling every possible combination of variables to determine which has the lowest BIC would be 

time-consuming and inefficient. The process used in this study is to introduce each non-flow variable 

to a model with the main flow variables. Many studies have shown that flow variables are generally 

more important predictor variables than non-flow variables. The variables that maximise the log-

likelihood (and therefore minimise the BIC) are then added to the flow-only model in a forward 
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substitution process and the BIC is calculated. This process is repeated for a number of variable 

combinations (but not all combinations), taking into account that some variables may be correlated, 

as this is fairly common, particularly for layout/design variables. 

Where variables are correlated, the ‘best’ two variables may not result in a better model. The 

correlation between different variables can be determined by examining the correlation matrix. The 

correlation matrix is a matrix of correlation coefficients between the variables used for modelling. 

Correlation coefficients indicate the strength and direction of a linear relationship between two 

random variables, where a value of one indicates a perfect positive correlation between two variables 

and a value of zero indicates statistical independence. Figure 3 illustrates an example of different 

values of linear correlation. The more scattered the data the lower the correlation value (compare the 

bottom left scatterplots with the corresponding value on the top right on the diagonal – for example 

the 0.025 value is the most scattered of the data plots (bottom left)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Examples of linear correlation 

4.5 Testing Goodness of Fit and Preferred Models 

After the model with the lowest BIC has been obtained, the models are ranked in order of lowest 

(best) to highest (worst) BIC. A number of models are then selected for goodness of fit testing, 

because although the BIC provides us with models based on a parsimonious variable set and 

maximum likelihood, the models may still not fit the data well. Additionally, likelihood and goodness 

of fit are not directly related, meaning that the model with the best likelihood or BIC may not be the 

model with the best goodness of fit.  

The models that are selected for goodness of fit testing are those that have a low BIC and have the 

variables that professional knowledge deems necessary. These ‘necessary’ variables are usually 
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limited to the conflicting flow variables, such as entering and circulating flows in predicting entering 

versus circulating crashes. 

The usual methods for testing goodness of fit for generalised linear models involve using the test 

statistics: scaled deviance G2 (twice the logarithm of the ratio of the likelihood of the data under the 

larger model to that of the data under the smaller model) or Pearson’s 2 (the sum of squares of the 

standardised observations). These statistical tests are not accurate for testing goodness of fit for 

crash prediction models, except at an aggregate level (total crashes) at higher flow intersections 

where crash rates are relatively light. In most cases, the models are fitted to data with very low crash 

means, and the result is the ‘low mean value’ problem. This problem was first pointed out by 

Maycock and Hall (1984).  

In Wood (2002), a grouping method has been developed that overcomes the ‘low mean value’ 

problem. The central idea is that sites are clustered and then aggregate data from the clusters is 

used to ensure that a grouped scaled deviance follows a 2 distribution if the model fits well. 

Evidence of goodness of fit is provided by a p-value. If this value is less than 0.05, say, this is 

evidence at the 5% level that the model does not fit well (i.e. 95% confident). Software has been 

written in the form of Minitab macros in order to run this procedure. 

Once the goodness of fit has been calculated for the models selected for testing, the ‘preferred’ 

model is identified. This is the model that maximises the goodness of fit. 

If the model fits poorly over a certain range of predictor variables (for example high or low volumes), 

this can be identified using the grouping technique by plotting predicted crashes against reported 

crashes. A poor fit is illustrated by a group that has a different predicted and reported number of 

crashes (where the plotted point is furthest from the 45 degree line). The site features of approaches 

in any outlier groups can then be examined to determine where the model relationship may not 

apply. 

4.6 Model Interpretation 

4.6.1 Determining significance 

Once models have been developed, the relationship between crashes and predictor variables can be 

interpreted from the parameter values in most cases. However, caution should always be exercised 

when interpreting such relationships when multiple predictor variables are used because two or 

more variables can be correlated. Where variables are correlated or where a variable appears twice in 

the model (Hoerl’s function), it is advisable to plot the model to understand the relationship between 

the predictor variables and crashes.   

When examining the relationships with non-flow variables, it is important to determine whether they 

are significant. The significance of the model parameters is determined by examining the 95% 

confidence interval for the model parameter to identify if the relationship changes in trend over the 

range of the confidence interval. For example, a relationship may be significant if the both the upper 

and lower limits of the confidence interval indicate crashes increase with increases in the value of 

the predictor variable. 

In the following sections, guidance is given on interpreting crash relationships for: 

 power functions 

 exponential functions  

 covariates. 
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4.6.2 Power functions 

Equation 3.6 presents a model with a single variable (such as a flow or speed) with a power function 

form. This section examines interpretation of the relationship between crashes and a predictor 

variable in a model of this type. The method can also be used to examine a single variable with a 

power function form in a multiple variable model. 

 1
10
bxbA   (Equation 3.6) 

where: 

A   = annual mean number of crashes 

x1    = continuous flow or non-flow variable 

b0 and b1   = model parameters.   

In this model form, the parameter b0 acts as a constant multiplicative value. If the number of 

reported injury crashes is not dependent on the value of predictor variable (x1), then the model 

parameter b1 would be zero. In this situation, the value of b0 is equal to the mean number of 

crashes. The value of the parameter b1 indicates the relationship that the predictor variable has (over 

its range) with crash occurrence. Five types of relationship exist for this model form, as presented in 

figure 4 and discussed in table 3. 

 
Figure 4 Relationship between crashes (A) and predictor variable x for different values of model 

exponents (b1) 

Table 3 Relationship between predictor variable and crash rate 

Value of exponent Relationship with crash rate 

bi > 1 For increasing values of the variable, the number of crashes will increase at 

an increasing rate 

bi = 1 For increasing values of the variable, the number of crashes will increase at 

a constant (or linear) rate 

0 < bi  < 1 For increasing values of the variable, the number of crashes will increase at 

a decreasing rate 
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Value of exponent Relationship with crash rate 

bi = 0 The number of crashes will not change with changes in the predictor 

variable 

bi < 0 For increasing values of the variable, the number of crashes will decrease 

Generally, models of this form have exponents between bi = 0 and bi = 1, with most flow variables 

having an exponent close to 0.5, ie the square root of flow. In some situations, however, parameters 

have a value outside this range.  For cycle flows the variable is often well below 0.5 which indicate a 

strong ‘safety-in-numbers’ effects; ie as cycle flows increase the individual risk of a cyclists having a 

crash reduces.  

4.6.3 Exponential functions 

Equation 3.7 presents a model with a single variable (such as a flow or speed) with an exponential 

function form. As with power functions, the interpretation can also be used to examine a single 

variable in a multiple variable model. 

 11
0

bxebA    (Equation 3.7) 

where: 

A   = annual mean number of crashes; 

x1    = continuous flow or non-flow variable; and 

b0 and b1   = model parameters.   

The value of the parameter b1 indicates the relationship that the predictor variable has (over its 

range) with crash occurrence. Three types of relationship can be seen for this model form, as 

presented in figure 5 and discussed in table 4. 

 
Figure 5 Relationship between crashes (A) and a predictor variable x for different values of model 

parameter (b1) 

Table 4 Relationship between predictor variable and crash rate 

Value of parameter Relationship with crash rate 

bi >0 For increasing values of the variable, the number of crashes will increase at 

a increasing rate 
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Value of parameter Relationship with crash rate 

bi = 0 The number of crashes will not change with changes in the predictor 

variable 

bi < 0 For increasing values of the variable, the number of crashes will decrease at 

a decreasing rate 

4.6.4 Covariates 

In the modeling exercise, covariates are different b0 parameters for different cities or jurisdictions. 

As all crash prediction models include multiplicative b0 parameters regardless of the functional form 

of the predictor variables, covariates can be applied to all models.  

An alternative to having multiple b0 values, is to present the b0 value for one jurisdiction (Auckland) 
and a multiplier for the other cities. This multiplier factor indicates how much higher (or lower) the 
number of crashes is for similar sites in different cities/jurisdictions.  In this case different b0 values 
are provided for New Zealand, Queensland and South Australia (Adelaide).  

4.7 Queensland Modeling 

The methods outlined in this section show the full process used to develop the New 
Zealand crash prediction models.  Given the small sample size of the Queensland data and 
the tight timeframes for this stage of the study, the model forms and key predictor 
variables have generally not been changed with the addition of the Queensland data.  
Rather the data has been added to the modeling database and the models re-run.  The 
only exception is the traffic signal models where we have taken the opportunity to reduce 
the number of predictor variables. 

At this stage goodness-of-fit testing has also not been undertaken for the new models, 
given the number of additional sites from Queensland is fairly small compared with the 
overall sample set. It is unlikely that these additional sites would have a major impact on 
the overall goodness of fit of the models, at least in a positive way.     

Given the availability of suitable data it would be worthwhile looking at models with other 
prediction variables.  The analysis sections that follow make some recommendations on 
where further refinements of the models for Queensland would be desirable.  Ideally 
before doing this, more Queensland sites would be added to the sample set and validation 
of the new models at groups of sites in Queensland would be undertaken.     
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5 Mid-block cycle crash prediction models 
The following section presents the crash prediction models developed for the following cyclist crash 

types: 

 total mid-block cycle crashes 

 mid-block turning cycle crashes (into and out of drive-ways and low volume side-roads) 

 mid-block non-turning cycle crashes 

The models have been developed for undivided arterial roads only. 

To apply the models an analyst either uses the total mid-block crash prediction model or uses the 

sum of the turning and non-turning cycle crash prediction models.  The latter method is likely to be 

more accurate when there are more or less side-roads and accesses than a typical route.  

The models were developed in accordance with the process outlined in chapter 3.  Each model is 

presented in the following sections.  The original models from New Zealand are presented first (from 

extracts from the original research reports) and then the models with the Queensland data, along 

with the Queensland covariate, are presented next.   

5.1 Total Cyclist versus Motor Vehicle Crashes 

In the New Zealand study (Turner et al.2009) ten models were developed for this crash type before 

settling on a preferred model (see appendix A for the models calculated for this and all other crash 

types). Appendix B outlines the full set of predictor variables and model parameters that were 

calculated for each of the ten models. Equation 4.1 presents the preferred model form, which 

includes the total two-way flow for both motor vehicles and cyclists, the length of the mid-block 

section and a covariate for the presence of a flush (painted) median.   

 MEDIANFLUSHUCMN LCQA  45.016.025.0
0 05. -2101  (Equation 4.1) 

where: 

AUCMN0 =   annual number of mid-block crashes involving cyclists only 

(subscript denotes model type – see Appendix C); 

Q                  =  total two-way motor vehicle flow for the link (AADT) 

C  =  total two-way cycle flow for the link 

L  =  length of mid-block in kilometres (measured from aerial photos) 

 ФFLUSHMEDIAN  =  factor to multiply the crash prediction by if a flush (painted) 

median is present. This factor is ФFLUSHMEDIAN = 0.63.  

The length for each mid-block starts 5Om from the yield line of a major intersection and ends 50m 

prior to the yield line of the next major intersection.  A major intersection is in most cases a set of 

traffic signals or a roundabout.  It may also be a higher volume priority controlled intersection if 

there is a large change in the mid-block traffic flow at a location or the road is terminating.  

Equation 4.1 implies that the presence of a flush (painted) median mid-block can reduce cyclist 

crashes by 37%. All of the flush medians were at least 2m wide, but some were up to 4m wide 

(typically they were 2.5 to 3m wide). The safety benefit provided by flush medians to cyclists is likely 

to result from the extra usable road width that flush medians provide to motorists to avoid cyclists 

travelling on the side of the carriageway.  In the absence of a flush median, drivers would need to 
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cross the centre-line into the opposing traffic lane, which they would generally not feel comfortable 

doing even if at the time there is no opposing traffic.    

Equation 4.1 has a p-value of 0.05, indicating a model with good fit (values below 0.05 indicate a 

poor model). The goodness of fit can be illustrated by comparing the predicted mean number of 

crashes and the reported number of crashes for ‘grouped’ (approach) data (as outlined in Wood 

(2002)). Figure 4.1 presents this comparison between ‘grouped’ reported and predicted crashes for 

the preferred model. A poor fit is illustrated by a group that has different predicted and reported 

numbers of crashes (where the plotted point is furthest from the 45 degree line). If we have no 

evidence of poor fit, this gives us valid grounds for increased confidence in the model. Figure 4.1 

indicates a generally good fit for most approach groups. However, the New Zealand model appears 

to underestimate crashes at sites with higher traffic volumes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Relationship between predicted and reported crashes for AUCMN0 

A number of other models were developed, but did not have as good a fit as the preferred model 

presented. These included non-flow variables with significant relationships, such as: 

 effective width of the kerbside lane, including the vehicle lane and cycle lane, where present 

 the presence of a cycle lane 

 mean motor vehicle speed along each mid-block section. 

5.1.1 Discussion 

The models show that crashes increase with increasing traffic volume, mid-block length, effective 

width and mean motor vehicle speed.  The impact of increasing traffic flows and speed on cycle 

safety reinforces the strategy to move cyclists off busy and high speed roads where this is feasible.  

The models indicate there is a strong safety-in-numbers effect for cyclists (given low exponent on 

cycle flows), with the individual risk per cyclists reducing considerably as the volume of cyclists 
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increases.  This supports strategies to develop well connected cycle corridors, with few pinch-points, 

that can attract suitable numbers of cyclists, rather than strategies to provide facilities on all roads 

in a piecemeal fashion.     

One of the New Zealand models (Turner et al. 2009) suggests that the presence of a cycle lane 

increases crashes by 21%.  However further analysis using before and after data, and from a review 

of studies undertaken elsewhere, showed that cycle lanes do reduce crashes by between 10% and 

20%.  The increase in crash in the model may be as a result of bias in sites where cycle facilities have 

been installed.  They may have been installed at sites which already had a cycle crash problem. 

 

5.1.2 Queensland Modelling 

Table 4.1 shows the model parameters for the original models (as above) and the new model with 

the Queensland data.  The original research data-set included 97 sites. A further 13 sites have been 

added from Queensland.  Covariates have been developed for both New Zealand and Queensland. 

 

 Constant 

(b0) 

Traffic Flow 

exponent 

Cycle Flow 

Exponent 

Length 

Exponent 

Flush Median 

Factor 

Original Model 1.05E-2 0.25 0.16 0.45 0.63 

NZ Covariate 3.71E-3 0.29 0.24 0.52 0.77 

Qln Covariate 1.82E-2 0.30 0.24 0.51 0.77 

Table 4.1 All Cycle versus Motor-vehicle crashes on mid-blocks Model Parameters 

The addition of the Queensland data (from 13 sites) has been to increase the importance of the 

predictor variables over the constant value.  This means that variations in the values of the predictor 

variables will have more effect on the crash predictions than with the original (NZ) model.  The 

importance of the flush median is also reduced, at only 23% reduction in crashes compared with 37% 

previously.  This may be as a result of there being few flush (painted) medians in the Queensland 

data-set.  This needs further investigation. 

A comparison between the constant covariate values in the new model shows that the rate of cycle 

crashes in Queensland is five times that of New Zealand for a given combination of flows and length.  

This may be due to higher reporting rate of crashes in Queensland or due to a number of other 

factors that are not currently in the model, such as different lane widths and parking utilisation and 

turn-over.  Further analysis is required to understand this difference.    

5.2 Mid-Block Turning Cycle Crashes 

This model considers only the crashes that involve cyclists that are turning into or out of the mid-

block sections from drive-ways and minor side-roads.  For this crash type, 18 models were 

developed. Appendix B outlines the full set of predictor variables and model parameters that were 

calculated. Equation 4.2 presents the preferred model form, which includes the total two-way flow 

for motor vehicles, the length of the mid-block section and a covariate for the presence of a flush 

median.   

 MEDIANFLUSHUCMN LQA  54.019.0
1 50. -2103  (Equation 4.2) 

where: 
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AUCMN1  = annual number of mid-block turning crashes involving cyclists v motor vehicles 

(subscript denotes model type – see appendix C) 

Q                  =       total two-way motor vehicle flow for the link 

L                   =       length of mid-block in kilometres (measured from aerial photos) 

ФFLUSHMEDIAN = factor to multiply the crash prediction by if a flush median is present. This factor 

is: ФFLUSHMEDIAN = 0.48.  

Equation 5.2 suggests that the presence of a flush median mid-block can reduce interactions 

between turning cyclists and motor vehicles by more than 50%. Again, this reduction may be a result 

of the extra width that flush medians afford to motorists to avoid cyclists travelling on the side of 

the carriageway. The flush median also allows right-turning traffic, both cycles and motor vehicles, 

to be separated from through-traffic, further reducing the likelihood of interactions.  This appears to 

be a good option where there are a lot of turning movements.  It appears to be less important when 

most of the cyclists are travelling straight through as evident in the next model where flush median 

is not one of the key variables in the preferred model. 

5.2.1 Queensland Modelling 

Table 4.2 shows the model parameters for the original models, as above, and the new model with 

the Queensland data.  Covariates have been developed for both New Zealand and Queensland. 

 

 Constant 

(b0) 

Traffic Flow 

exponent 

Length 

Exponent 

Flush Median 

Factor 

Original Model 3.50E-2 0.19 0.54 0.48 

NZ Covariate 6.39E-3 0.33 0.58 0.67 

Qln Covariate 1.52E-2 0.33 0.58 0.67 

Table 4.2 Turning Cycle versus Motor-vehicle crashes on mid-blocks Model Parameters 

Again, the addition of the Queensland data has been to increase the importance of the predictor 

variables over the constant value.  This means that variations in the values of the predictor variables 

will have more effect on the crash predictions than with the original (NZ) model.  So as traffic 

volumes increase there will a greater effect on the crash rate than in the New Zealand-only models.  

The importance of the flush median is also reduced, at 33% reduction in crashes compared with 52% 

previously.   

A comparison between the constant covariate values in the new model shows that the rate of cycle 

crashes in Queensland is approximately two and half times that of New Zealand for a given 

combination of flows and length.  This is lower than the difference in overall cycle crashes (of five 

times).  Further analysis is required to understand this difference.    

5.3 Mid-Block Non-Turning Crashes 

5.3.1 Cyclist v motor vehicle crashes 

This model includes all crashes where the cyclist was travelling straight through on the link and is 

hit by a vehicle; either as a sideswipe or while the vehicle is turning. For this crash type, ten models 

were developed. Appendix B outlines the full set of predictor variables and model parameters that 
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were calculated. Equation 4.3 presents the preferred model form, which includes the total two-way 

flow for motor vehicles, cyclists, and the length of the mid-block section.   

 

 27.050.031.0
2 28. LCQAUCMN  -4102   (Equation 4.3) 

where: 

AUCMN2  = annual number of mid-block non-turning cyclists v motor vehicle crashes 

(subscript denotes model type – see appendix C) 

Q                 =       total two-way motor vehicle flow for the link 

C                 =       total two-way cycle flow for the link 

L                =     length of mid-block in kilometres   

Equation 4.3 indicates that crashes increase with increasing motor vehicle flow, cycle flow and mid-

block length. Equation 4.3 has a p-value of 0.31, indicating a model with good fit. 

Figure 4.3 presents the comparison between the predicted and reported number of crashes for the 

preferred model and indicates a generally good fit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Relationship between predicted and reported crashes for AUCMN2 

 

5.3.2 Queensland Modelling 

Table 4.3 shows the model parameters for the original non-turning cycle crash models, as above, 

and the new model with the Queensland data.  Covariates have been developed for both New 

Zealand and Queensland. 
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 Constant 

(b0) 

Traffic Flow 

exponent 

Cycle Flow 

Exponent 

Length 

Exponent 

Original Model 2.28E-4 0.31 0.50 0.27 

NZ Covariate 1.96E-2 0.18 0.47 0.46 

Qln Covariate 1.17E-2 0.18 0.47 0.46 

Table 4.3 Non-turning Cycle versus Motor-vehicle crashes on mid-blocks Model Parameters 

 

The addition of the Queensland data (13 sites) has been to reduce the importance of the traffic 

volume variable; as traffic volumes go up the crash rate does not increase at the same rate as it does 

for the New Zealand data alone.  The relationship with cycle flow is similar, with a reduced safety-in-

numbers effect as the cycle volumes increase.  It appears that the safety-in-numbers affect has a 

much bigger impact on turning related crashes (refer to models in Appendix B).  This may-be due to 

the surprise factor of cyclists pulling out from side-roads and accesses when they are not expected.  

The absence of the flush median variable in the preferred model indicates this is less important for 

crashes not involving turning (it leads to approximately a 5% reduction in crashes). 

A comparison between the constant covariate values in the new model shows that the rate of cycle 
crashes in Queensland is less than that of New Zealand (around 60%) for a given combination of 
flows and length. 
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6 Roundabout Crash Models 

6.1 Introduction 

The following sections present the cycle versus motor-vehicle crash models developed for entering 

versus circulating (cyclists circulating) and ‘other‘ cyclists crash types at urban roundabouts.  The 

New Zealand crash prediction models for roundabouts were developed in Turner et al. (2009b) 

6.2 Entering versus Circulating Cyclist Crash Models 

Models were developed for entering versus circulating crashes involving motor vehicles (entering) 

and cyclists (circulating). A much smaller percentage of crashes involve cyclists entering and 

motorists circulating. Therefore these crashes are included in the ‘other cyclists’ crash type. The NZ 

Transport Agency crash types that are included in this dataset are crash codes H, J, K and L (see 

Appendix B).  The Queensland crash coding was converted to the equivalent NZ Transport Agency 

coding.    

Twenty-two models were developed in total. Appendix A outlines the predictor variables and 

Appendix B the parameters of the models developed. Equation 5.1 presents the preferred model 

form, which includes entering motor vehicle volumes, circulating cyclist volumes and the mean 

speed of the entering motor vehicles.   

 49.038.043.0
1 88.3 Ece

-5
UCAR SCQ10A    (Equation 5.1) 

where: 

AUCAR1 = annual number of entering v circulating cyclist crashes  

Qe = entering flow on the approach 

Cc = circulating cyclist flow perpendicular to the entering motor vehicle flow 

SE = free mean speed of vehicles as they enter the roundabout. 

Equation 5.1 has a p-value of 0.61, indicating a good fit for the model. Figure 5.1 presents the 

comparison between reported and predicted crashes of the preferred model. Figure 5.1 indicates a 

generally good fit, except for an outlier with a reported grouped mean of 2.0 and a predicted 

grouped mean of 0.73. This outlier comprises of a group of three approaches with high entering 

motor vehicle volumes and high cyclist circulating volumes. 

The entering speed is an important variable in the model.  Crashes increase as the mean speed 

increases, but at a reducing rate.  As entry speeds increase drivers often have less time to react to 

road users on the roundabout and may miss the circulating cyclist who is off to the right of other 

traffic, in the shoulder of the circulating lanes.  Apart from entering vehicle speed, other significant 

relationships between non-flow variables and crashes are: 

 presence of a downhill gradient on the approach to the roundabout 

 circulating vehicle speed. 

The models showed that the number of crashes increases with increasing circulating and entering 

vehicle speeds, and with the presence of a downhill gradient (see Appendix B).  There was no 

increase observed for multiple circulating lanes, although this factor may well be taken into account 

in the entering and circulating speed variable, as larger roundabouts often have higher travel 

speeds.  In other research (Turner and Roozenberg, 2007) on higher (rural) speed limit roundabouts, 
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it was found that motor-vehicle crash rates were 35% higher than for lower speed roundabouts. It is 

reasonable to assume that at least a 35% increase would be expected for cycle related crashes.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Relationship between predicted and reported crashes for the AUCAR1 model 

 

6.2.1 Queensland Modelling 

Table 5.1 shows the model parameters for the entering versus circulating cycle crash models 

(cyclists circulating), as above, and the new model with the Queensland data.  Covariates have been 

developed for both New Zealand and Queensland. 

 

 Constant 

(b0) 

Traffic Entry 

Flow exponent 

Cycle 

Circulating 

Flow Exponent 

Entry Speed 

Exponent 

Original Model 8.20E-5 0.43 0.38 0.46 

NZ Covariate 1.55E-4 0.39 0.37 0.34 

Qln Covariate 6.76E-5 0.39 0.37 0.34 

Table 5.1 Entering versus Circulating Cycle Crash Model Parameters 

The addition of the Queensland data has had very little impact on the traffic and cycling flow 

exponents, but has reduced the impact of the increase in entry speed.  This indicates that increase 

in entry speed is less of a factor in the variability in such crashes in Queensland.   There is still a 
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safety-in-numbers effect for cyclists (with exponents around 0.37 on the cycle flow), although not as 

high as observed on mid-block sections.   

A comparison between the constant covariate values in the new model shows that the rate of 
entering versus circulating cycle crashes in Queensland is under half that observed at New Zealand 
roundabouts for a given combination of flows and speed.  This may be due to different design 
standards for roundabouts.  The New Zealand data-set includes a lot of older roundabout designs 
(based on older design requirements) and some unusual roundabout layouts. Further analysis is 
required to understand this significant difference. 

6.3 ‘Other’ Cyclist Crash Models 

Twelve models were developed for ‘other’ crashes involving cyclists entering and exiting the 

roundabout. The crash types that are included in the dataset are those involving both cyclists and 

motor vehicle but exclude crashes where the cyclist is circulating and the motor vehicle is entering, 

as this is covered by the previous model.  Further disaggregation of cycle crashes was not possible 

given the low numbers of some cycle crash types.   

Appendix A outlines the predictor variables and the parameters of all the models. Equation 5.2 

presents the preferred model, which includes both the motor vehicle and cyclist approach flows. 

 23.004.1
2 07.2 aa

-7
UCAR CQ10A    (Equation 5.2) 

where: 

AUCAR1 = annual number of ‘other’ crashes involving cyclists  

Qa = approach flow (sum of entering and exiting motor vehicle flows) 

Ca = cyclist approach flow (sum of entering and exiting cyclist flows). 

The model indicates that as traffic volumes or cyclist volumes increase, the number of crashes also 

increases in almost a linear manner. The number of crashes is influenced more by an increase in the 

motor vehicle volume than an increase in the cyclist volume. Increasing the cyclist volume has a 

‘safety in numbers’ effect, where the per-cyclist crash risk drops as the number of cyclists increase. 

More evidence of this effect can be found in Turner et al (2006). 

The preferred model has a p-value of 0.50, indicating a good fit. Figure 5.2 presents the comparison 

between the predicted and reported number of crashes for the preferred model.  
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Figure 5.2 Relationship between predicted and reported crashes for the AUCAR2 model 

There were few strong relationships found with non-flow predictor variables, which may in part be 

due to so many crash types being aggregated together.  Interestingly as the visibility increases, the 

number of crashes decreases, which is the opposite to that found for the main motor-vehicle only 

crash types.  This matter needs further investigation.   

6.3.1 Queensland Modelling 

Table 5.2 shows the model parameters for the ‘other’ cycle crash models, as above, and the new 

model with the Queensland data.  Covariates have been developed for both New Zealand and 

Queensland. 

 

 Constant (b0) Approach Traffic 

Flow exponent 

Approach Cycle 

Flow Exponent 

Original Model 4.15E-7 1.04 0.23 

NZ Covariate 2.55E-7 1.11 0.19 

Qln Covariate 2.83E-7 1.11 0.19 

Table 5.2 ‘Other’ Cycle Crash Model Parameters 

The addition of the Queensland data has had very little impact on the traffic and cycling flow 

exponents.  The predictor variables do have a strong effect on the cycle crash prediction, especially 

the traffic flow. There is a safety-in-numbers effect for cyclists which is comparable with mid-block 

sections.   As the cycle volumes grow the risk per cyclists reduces considerably.  
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A comparison between the constant covariate values in the new model shows that the rate of ‘other’ 
cycle crashes in Queensland and New Zealand at roundabouts is similar. 
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7 Traffic Signal Cycle Crash Prediction Models  

This section presents the various crash prediction models that have been developed for the main 
cycle crash types at traffic signals.  In addition to volume, the models attempt to look in more detail 
at the impact of various cycle facility types and road layout variables.  A number of different models 
have been developed for each crash type to attempt to understand the impact of infrastructure 
features (see Appendix B).  The previous research involved data from Christchurch in New Zealand 
and Adelaide in South Australia. 

7.1 Right-turn against crashes (NZ type LB) 

This crash type involves a cyclist riding straight through a junction colliding with a vehicle turning 
right from the opposite direction.  This invariably involves a driver that failed to give way when 
turning right, having failed to see the cyclist.  The preferred model form is as follows:   

AUXLB = B0 X C2b1 X Q7 b2 X exp (b3  X No. of through traffic lanes) X 
(Intersection depth) B4 X FPainted X FApproach facility X FSharedRT X FRTphasing  

Factor Value Description 

B0 (Adelaide) 2.45E-03 Constant for Adelaide 
B0 (Christchurch) 1.28E-03 Constant for Christchurch 
B1 0.52 Exponent on through cycle flow 
B2 0.19 Exponent on right turning traffic flow 
B3 -0.54 Parameter on number of through lanes 
B4 -0.25 Exponent on intersection depth  
FApproach facility 0.58 Presence of approach cycle facility 
FPainted 0.59 Coloured treatments 
FSharedRT 0.71 Shared right-turn / through traffic lane on motor vehicle movement 

approach (RT motor vehicles) 
FRTphasing 1.05 Fully / partially protected phasing arrangement  at intersection 

Table 6.1 Model Parameters for NZ and South Australia Model 

This model suggests that approaches with a coloured approach cycle facility are expected to have 
fewer cycle injury crashes.  The use of exclusive right turn phasing has very little effect on crashes.  

An unexpected finding of this model is that the presence of shared lanes for right turning cars in the 
conflicts seems to improve safety.  This is highly correlated with other factors for which it may be a 
surrogate.  

Figure 6.1 presents the comparison between the predicted and reported number of crashes for the 
preferred model. 
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Figure 6.1 – Relationship between predicted and reported LB crashes 

7.1.1 Queensland Modelling 

Table 6.2 shows the model parameters for the new model with the Queensland data.  Covariates 

have been developed for New Zealand (Christchurch), South Australia (Adelaide) and Queensland. 

Factor Value Description 

B0 (Adelaide) 1.73E-03 Constant for Adelaide, South Australia 
B0 (Queensland) 1.26E-03 Constant for Queensland 
B0 (Christchurch) 1.26E-03 Constant for Christchurch, New Zealand 
B1 0.44 Exponent on through cycle flow 
B2 0.21 Exponent on right turning traffic flow 
B3 -0.48 Parameter on number of through lanes 
B4 -0.11 Exponent on intersection depth  
FApproach facility 0.69 Presence of approach cycle facility 
FPainted 0.73 Coloured treatments 
FSharedRT 0.89 Shared right-turn / through traffic lane on motor vehicle movement 

approach (RT motor vehicles) 
FRTphasing 1.22 Fully / partially protected phasing arrangement  at intersection 

Table 6.2 Model Parameters for New Model 

The addition of the Queensland data has had some impact on the model parameters, with a shift to 

more weight on the constant value, rather than the predictor variables.  The new model shows that 

approach cycle lanes (stand-up lanes) and coloured surfacing (which is only present at four sites in 

Queensland) do improve safety.  

A comparison between the constant covariate values in the new model shows that the right turn 
against cycle crash rate for a given set of parameters is very similar in Queensland and New Zealand, 
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but higher for Adelaide.  Given the large change in the constant values with the addition of the 
Queensland data further investigation of the model would be useful to determine if some of the 
other model parameters need to be adjusted. 

7.2 Right angle crashes (NZ type HA)  

This model involves a cyclist being hit at right angles from the left or right side by a driver on an 
adjoining approach.  This is often the result of the cyclist or driver running a red light.  In some 
instances the cyclists may have entered on a green or amber signal and was not able to get to the 
safety of the other side of the intersection prior to the green signal coming up on the adjoining 
approach. 

AUXHA = B0 X C2b1 X (Q5 + Q11) b2 X (Total Approach Width) b3 X (Intersection 
Depth) b4  

Factor Value Description 

B0 (Adelaide) 1.24E-04 Constant for Adelaide 
B0 (Christchurch) 2.34E-05 Constant for Christchurch 
B1 0.48 Exponent on through cycle flow 
B2 0.63 Exponent on through volumes traffic flows – to left and right 
B3 -0.09 Exponent on total approach width 
B4 -0.53 Exponent on intersection depth  

Table 6.3 Model Parameters for NZ and South Australian Model 

Figure 6.2 presents the comparison between the predicted and reported number of crashes for the 
preferred model.   It shows a group of intersections with a predicted average crash rate that have no 
observed crashes.   This outlier group has impacted on the fit of the model and so care needs to be 
taken with interpreting the model outputs.  Further research is required to understand the reasons 
for the outlier group. 
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Figure 6.2 – Relationship between predicted and reported crashes 

7.2.1 Queensland Modelling 

Table 6.4 shows the model parameters for the new model with the Queensland data.  Covariates 

have been developed for New Zealand (Christchurch), South Australia (Adelaide) and Queensland. 

Factor Value Description 

B0 (Adelaide) 8.06E-05 Constant for Adelaide 
B0 (Queensland) 1.09E-04 Constant for Queensland 
B0 (Christchurch) 1.63E-05 Constant for Christchurch 
B1 0.48 Exponent on through cycle flow 
B2 0.62 Exponent on through volumes traffic flows – to left and right 
B3 -0.09 Exponent on total approach width 
B4 -0.53 Exponent on intersection depth  

Table 6.4 Model Parameters for New Model 

The addition of the Queensland data has had some impact on the model parameters, with a shift to 

more weight on the constant value.  The model indicates that larger intersections are safer than 

smaller intersections.  This could be due to longer inter-green times (amber and all red) at large 

intersections or that cyclists are less likely to enter the intersection in the amber when there is a 

large intersection due to the perception they won’t be able to get right across the intersection safely.  

Further investigation of the crash data is required. 

A comparison between the constant covariate values in the new model shows that the right angle 
cycle crash rate for a given set of parameters is much higher in Queensland and South Australia than 
for  Christchurch.  This may be due to cyclists being able to use the footpath in Queensland and 
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Adelaide, which is not allowed in Christchurch, and crossing on the pedestrian crossing illegally.  
This requires further investigation. 

7.3 Same direction crashes (NZ types A, F, G) 

This model includes all cycle crashes that occur on the intersection approach, except left turn side-
swipe.  The New Zealand and South Australian model is as follows:    

AUXA*FG*   = B0 X CB1 X QB2 X Total Approach Width B3 X (kerbside lane 
width)B4  X FTransition facility X FPainted X Fshared lanes 

Factor Value Description 

B0 (Adelaide) 9.98E-05 Constant for Adelaide 
B0 (Christchurch) 2.74E-05 Constant for Christchurch 
B1 0.37 Exponent on entry cycle flow 
B2 0.38 Exponent on entry traffic flow  
B3 0.51 Exponent on total approach width (including B4 width) 
B4 -0.16 Exponent on kerb-side lane width 
FTransition facility 0.90 Presence of transition cycle facility on approach 
FPainted 1.49 Coloured treatments 
Fshared lanes 1.06 Presence of shared through/ left turn lanes on approach 

Table 6.5 Model Parameter for New Zealand and South Australian Model 

7.3.1 Queensland Modelling 

Table 6.6 shows the model parameters for the new model with the Queensland data.  Covariates 

have been developed for New Zealand (Christchurch), South Australia (Adelaide) and Queensland. 

Factor Value Description 

B0 (Adelaide) 2.44E-05 Constant for Adelaide 
B0 (Queensland) 3.05E-05 Constant for Queensland 
B0 (Christchurch) 8.02E-06 Constant for Christchurch 
B1 0.30 Exponent on entry cycle flow 
B2 0.55 Exponent on entry traffic flow  
B3 0.64 Exponent on total approach width 
B4 -0.38 Exponent on kerb-side lane width 
FTransition facility 1.06 Presence of transition cycle facility on approach 
FPainted 1.53 Coloured treatments 
Fshared lanes 1.22 Presence of shared through/ left turn lanes on approach 

Table 6.6 Model Parameters for New Model 

The addition of the Queensland data has had some impact on the model parameters, with a shift to 

more weight on the predictor variables.  As expected shared through and left lanes are not as safe 

as exclusive left and through lanes.  However the model also shows that the presence of a transition 

facility and painted cycle facilities appear to have a negative effect on safety, which is not what is 

expected.  The overall width of the kerb-side lane or kerb-side lane plus cycle lane seems to be a lot 

more important in addressing crashes. The model also indicates that larger intersections, with wider 

approaches are less safe.    
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A comparison between the constant covariate values in the new model shows that the same direction 
cycle crash rate/prediction for a given set of parameters is very similar in Queensland and South 
Australia, but much lower for Christchurch.  It is unclear whether this is due to safer intersection 
design, better driver and cyclist behaviour or different crash reporting rates.  It most likely takes into 
account all these factors. 

7.4 Left turn side-swipe crashes – cyclists straight through (NZ type GB) 

The model covers crashes between left turning motor-vehicles and through cyclists.  They generally 
occur when there are shared left and through lanes where the cyclists is travelling straight along the 
kerb-line and the driver of the motor-vehicle turns across them.  

AUXGBAC = B0 X C2 b1 X Q3 b2 X Fshared LT X FPainted X FStorage X FTransition facility  

Factor Value Description 

B0 (Adelaide) 2.58E-03 Constant for Adelaide 
B0 (Christchurch) 1.06E-03 Constant for Christchurch 
B1 0.223 Exponent for through cycle flow 
B2 0.369 Exponent for left turning traffic flow 
Fshared LT 2.410 Presence of shared through / left turn traffic lane on approach 
FPainted 0.375 Coloured treatments 
FStorage 2.353 Bicycle storage area present on approach 
FTransition facility 0.739 Presence of transition cycle facility on approach 

Table 6.7 Model Parameters for New Zealand and South Australian Model 

Figure 6.3 presents the comparison between the predicted and reported number of crashes for the 
preferred model. 
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Figure 6.3 – Relationship between predicted and reported crashes 

7.4.1 Queensland Modelling 

Table 6.6 shows the model parameters for the new model with the Queensland data.  Covariates 

have been developed for New Zealand (Christchurch), South Australia (Adelaide) and Queensland. 

Factor Value Description 

B0 (Adelaide) 1.92E-03 Constant for Adelaide 
B0 (Queensland) 4.40E-03 Constant for Queensland 
B0 (Christchurch) 8.78E-04 Constant for Christchurch 
B1 0.14 Exponent for through cycle flow 
B2 0.13 Exponent for left turning traffic flow 
Fshared LT 2.81 Presence of shared through / left turn traffic lane on approach 
FPainted 0.56 Coloured treatments 
FTransition facility 0.72 Presence of transition cycle facility on approach (eg. cycle lane provided 

between through and auxiliary left turn lane) 

Table 6.8 Model Parameters for New Model 

The addition of the Queensland data has had some impact on the model parameters, with a shift to 

more weight on the jurisdiction constant.  The new model shows that the presence of a transition 

facility between the left and through lanes for cyclists and painted facilities reduces left-turn side-

swipe crashes.  A shared left and through lane significantly increases the crash rate, which is 

expected.     

A comparison between the constant covariate values in the new model shows that the Christchurch 
Queensland intersections have a lower occurrence of left-turn side-swipe crashes than both Brisbane 
and Adelaide for given predictor variable values.   
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8 Conclusions and Recommendations 

8.1 Conclusions 

The New Zealand (and Adelaide) cycle crash prediction models developed for roundabouts, traffic 
signals and mid-block sections have been used as a basis for developing Queensland models for 
each of these sites types.  At this stage the number of Queensland sites in each category is fairly 
small, so there is still uncertainty in how well the prediction models can explain cycle crash risk in 
Queensland.  This can be improved by the collection of further data at the three site types across the 
State.  At this stage the conclusions need to be treated with caution.  In some cases the Queensland 
crash relationships with various predictor variables are very similar to that observed in New Zealand 
while in others it was not.    

8.1.1 Mid-block Crash Models 

Traffic volume (Q) was found to be an important variable in all models and cycle volume (C) was an 
important variable in all ‘cycle v motor vehicle’ crash types. Length (L) is also an important variable 
in mid-block crashes.  The crash risk per cyclist per 100m tends to be higher for shorter mid-block 
lengthens than for longer lengthens.   

The presence of a flush (or painted) median (indicated by the subscript FLUSHMEDIAN) reduces 
cycle-related crashes for mid-blocks, particularly crashes involving turning cyclists. This is likely to 
be a result of the extra space that cyclists and motor vehicles have to take evasive action if potential 
for a collision arises; ie. when the actions of a cyclists surprise a driver. The availability of space is a 
key issue for cyclists, which is reflected in this result. This, of course, is difficult to achieve on busy 
arterial roads, and providing (more) room for cyclists is a trade-off that needs to be made in balance 
with the needs of other road users. Where cycle volumes are high and carriageways are typically 
wide, as occurs in Christchurch, this is not as difficult to justify as it is in cities like Auckland and 
Brisbane, where carriageways and lane widths are typically narrower. 

The presence of a cycle lane does not feature as a key discrete variable for the mid-block sections, 
where the presence of a flush median and/or ‘no parking’ appear to be more important variables. 
However, a before-and-after study of cycle lanes in New Zealand found that there is a benefit of 
around a 10% reduction in all cycle crashes.  

8.1.2 Roundabout Crash Models 

At roundabouts the entry speed was a key factor in entering versus circulating cycle crashes (where 
cyclists circulating).  This is thought to be due to the reduced time that drivers have to scan the 
roundabout before entering, when there are higher speeds, and the higher likelihood they will miss 
the cyclists, especially when there are a lot of motor-vehicles using the roundabout.  A combination 
of reduced approach visibility and suitable geometry can be used to reduce approach speeds at 
roundabouts.    

8.1.3 Traffic Signals Crash Models        

At traffic signals the size of the intersection does impact on safety.  A wide kerbside lane or 
combined kerb-side lane and cycle lane improves safety for cyclists as they approach an 
intersection.  Various cycle facilities do have an impact on safety.  Coloured, or painted cycle 
facilities, does generally improve safety.  A combined through and left turn lane was found to be less 
safe than an exclusive left and through lane. 
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8.1.4 Jurisdiction Covariates Approach  

This research has shown how covariate cycle crash models can be developed for Queensland using a 
wider sample set across New Zealand and for traffic signals in Adelaide.  However, some care does 
need to be taken in using the current models based on the small number of sites that are available 
for Queensland.  Ideally data needs to be collected for a larger sample set of sites so that the 
Queensland crash models are more reflective of local conditions.  Some further refinement of the 
research would help to identify how the Queensland cycle crash rates differ from other jurisdictions.   

8.2 Recommendations    

This study has demonstrated how crash prediction models for cyclists at various site types can be 
developed using data from a combination of different jurisdictions (or States).  This is important in 
order to have a large enough sample of sites to have confidence in the model predictions, and to 
include sufficient predictor variables.  With sufficient data from a jurisdiction it is possible to 
produce a calibrated model for use in that State.  Unfortunately there are currently not enough sites 
from Queensland for there to be confidence in the Queensland calibration factors. A high priority for 
this work going forward is for a larger sample set of each site type to be pulled together.  Once this 
data is collected and new models produced it would also be important to validate the models, by 
using them to predict cycle crashes at sites which were not used to build the models.  This provides 
confidence that they are suitable, or not, for widespread application across the State. 

There are a variety of benefits of developing cycle crash prediction models for Queensland, 
including. 

1. Estimating the crash benefits (social costs) of installing cycling facilities and making 
improvements that enhance cycle safety (eg. reducing traffic volumes, reducing travel 
speeds and providing more space for cyclists, possibly through reallocation of road space)  

2. Developing robust urban AusRAP/ANRAM ratings for cyclists based on the features of a road 
and the cycle facilities that have been installed.  To make these State specific rather than 
rely on national or international risk rating factors (from iRAP). 

3. To contribute evidence to the development of policies and guidelines on infrastructure 
measures that can be made to improve cycle safety 

4. To evaluate the safety performance (level of safety service) of routes and series of 
intersections.  This is achieved by comparing the cycle crash predictions with the actual 
number of cycle crashes observed.  Is the crash rate typical or higher or lower than would be 
expected for the road features and operating conditions?  The models can also be used to 
assess the benefits of various improve schemes that could be applied, including changes to 
the traffic flow, road width and traffic speed along a corridor.     

Experience indicates that for stand-alone crash prediction models the minimum sample set is 
around 100 sites.  When the data is combined with a larger sample set and it is being used for 
calibration purposes (as is the case here) then around 50 sites is considered sufficient.  I would 
recommend the following next steps (likely cost of study is $200,000 to $500,000 depending on 
how many sites types and what quality of models TMR want): 

1) Agree the full list of site types and sub-site types for which models needs to be developed 
for Queensland.  For example TMR may wish to add priority intersections (new site type) and 
divided mid-blocks (sub-site type) to the list of sites of interest. 

2) Agree the key variables that are considered important for inclusion in the crash prediction 
models.  This may or may not be different for the variables looked at in the previous models 
developed. 
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3) Collect additional data for each site type so that there is a minimum of 50 sites available for 
the crash modelling exercise.  For priority intersections data for 100 sites would need to be 
collected as there is no current data-set for this site type.  Ideally 100x 3-arm and 100x 4-
arm intersections. For divided routes a smaller sample set would be sufficient (say 25 to 30 
sites), as part of a larger sample set of Queensland mid-blocks.         

4) Undertake a full model exercise for each site type.  This would not only look to include the 
same variables used in the previous models, but test whether other variables collected need 
to be included within the Queensland models. 

5) Assess whether there are any regional variations across the State by looking at a city/district 
calibration factor/dummy variable. 

6) Validate the models on road sections and intersections that where not used to build the 
models.  Consider say a further ten sites of each site type for validation.   

Other pieces of work that would be beneficial include: 

- Development of crash severity factors for each site type for motor-vehicle only and cycle 
crashes.  This can be undertaken through an analysis of the State crash database.  A similar 
exercise was recently completed in New Zealand as part of the development of the High Risk 
Intersection Guide, for motor-vehicle crashes.  This would enable severity to be considered 
when evaluating the safety of various sites for cyclists.     

- The development of reporting rates both for motor-vehicles and cycle crashes.  This can 
then be compared with reporting rates from other jurisdictions, to better understand the 
jurisdiction specific calibration factors.   

- Development of a crash prediction toolkit, in at least excel and ideally with a GIS capability 
to make the models more accessible and enable outputs to be presented graphically.  
Examples of the Beca intersection crash toolkit follow:   
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Mid-Block Cycle Crash Prediction Models 
The following section outlines the model parameters for the eight crash categories.  

 

Predictor 

variables 

Parameters Multiplier 

Ф 

Error 

structure 

 BIC 

b0 b1 b2 b3 b4 

Q, L 1.43×10-2 0.29 0.36    k = 1.6 2.861 

C, L 8.73×10-2 0.20 0.36    k = 1.6 2.862 

Q, C, L 8.60×10-3 0.25 0.17 0.37   k = 1.6 2.902 

Q, C, L, 

ФFLUSHMEDIAN  

1.05×10-2 0.25 0.16 0.45  0.63 k = 1.7 2.926 

Q, C, L, We 1.65×10-3 0.33 0.11 0.28 0.65  k = 1.7 2.937 

Q, C, L, ФCYCLANE 7.11×10-3 0.25 0.19 0.38  1.21 k = 1.6 2.944 

Q, C, L, W 1.15×10-3 0.36 0.15 0.35 0.62  k = 1.6 2.945 

Q, C, L, S 2.04×10-3 0.23 0.18 0.37 0.40  k = 1.6 2.949 

Q, C, L, Lns 7.38×10-3 0.27 0.17 0.37 -0.05  k = 1.6 2.949 

Q, C, L, e(As/100),  

e(Ar/100), e(Ao/100)* 

8.26×10-3 0.30 0.14 0.50 -0.03  k = 1.7 3.038 

*For the last model, b5 = 0.0 and b6 = -0.01. 

Table A.1 – Cyclist Mid-Block Crashes (UCMN0) 

 

Predictor  

variables 

Parameters Multiplier 

Ф 

Error 

structure 

BIC 

b0 b1 b2 b3 b4 

Q, L, ФNOPARKING  0.84 0.30    0.25 k = 1.4 5.120 

Q, L 0.71 0.35     k = 1.3 5.171 

Q, L, 

ФVERYLOWPARKINGUSE 

0.76 0.21    1.64 k = 1.3 5.185 

Q, C, L 0.66 0.29 0.35    k = 1.3 5.192 

Q, L, ФCYCLANE 0.71 0.36    1.22 k = 1.3 5.209 

C, L, ФNOPARKING 0.34 0.28    0.36 k = 1.3 5.211 

Q, L, e(Ar/100) 0.78 0.28 0.00    k = 1.3 5.211 

Q, L, ФFLUSHMEDIAN 0.71 0.39    0.85 k = 1.3 5.214 

C, L 0.37 0.33     k = 1.2 5.218 

Q, L, e(As/100)   0.37 0.30 0.02    k = 1.2 5.256 

Table A.2 – All mid-block crashes (UAMN0) 

 

  



 

 

Predictor 

variables 

Parameters Multiplier 

Ф 

Error 

structure 

BIC 

b0 b1 b2 b3 b4 

Q 2.92×10-2 0.15     k = 1.0 2.304 

Q, L 2.22×10-2 0.21 0.42    k = 1.2 2.319 

C, L 2.29×10-1 -0.05 0.41    k = 1.2 2.322 

Q, L, ФFLUSHMEDIAN 3.50×10-2 0.19 0.54   0.48 k = 1.3 2.329 

Q, L,  

ФVERYLOWPARKINGUSE 

6.36×10-3 0.30 0.27   1.85 k = 1.3 2.340 

Q, L, ФNOPARKING 1.08×10-2 0.28 0.41   0.49 k = 1.2 2.353 

Q, L, e(As/100)   1.98×10-2 0.19 0.38 0.03   k = 1.2 2.355 

Q, L, ФCYCLANE 1.90×10-2 0.21 0.44   1.32 k = 1.2 2.358 

Q, L, W 2.94×10-3 0.31 0.40 0.63   k = 1.2 2.363 

Q, L, S 8.71×10-4 0.17 0.42 0.93   k = 1.2 2.364 

Q, C, L 2.81×10-2 0.23 -0.09 0.42   k = 1.2 2.365 

Q, L, Lns 1.41×10-2 0.25 0.42 -0.13   k = 1.2 2.365 

Q, L, e(Ar/100) 2.09×10-2 0.21 0.42 0.00   k = 1.2 2.366 

Q, C, L, 

ФFLUSHMEDIAN 

4.69×10-2 0.21 -0.11 0.55  0.48 k = 1.3 2.375 

Q, C, L, We 1.10×10-3 0.39 -0.22 0.24 1.33  k = 1.3 2.376 

Q, C, L, W 3.40×10-3 0.35 -0.10 0.40 0.67  k= 1.2 2.408 

Q, C, L, S 1.50×10-3 0.19 -0.06 0.42 0.82  k = 1.2 2.410 

Q, C, L, Lns 1.66×10-2 0.29 -0.10 0.42 -0.15  k = 1.2 2.411 

Table A.3 – Cyclist Mid-Block Turning Crashes (UCMN1) 

 

Predictor 

variables 

Parameters Multiplie

r Ф 

Error 

structure 

BIC 

b0 b1 b2 b3 b4 

Q, L, ФNOPARKING 1.37×10-3 0.56 0.10   0.25 k = 0.8 3.646 

Q, L 7.26×10-3 0.39 0.16    k = 0.7 3.648 

C, L 1.09E×10-1 0.23 0.14    k = 0.8 3.653 

Q, L, 

ФVERYLOWPARKINGUSE 

2.15×10-3 0.48 -0.02   2.05 k = 0.8 3.655 

Q, L, ФFLUSHMEDIAN 8.01×10-3 0.40 0.23   0.72 k = 0.7 3.687 

Q, C, L 4.09×10-3 0.35 0.19 0.17   k = 0.7 3.690 

Q, L, e(As/100)   7.16×10-3 0.39 0.15 0.01   k = 0.7 3.694 

Q, L, ФCYCLANE 7.19×10-3 0.39 0.17   1.06 k = 0.7 3.695 

Q, L, e(Ar/100) 5.83×10-3 0.41 0.14 0.00   k = 0.7 3.695 

Table A.4 – All Mid-Block Turning Crashes (UAMN1) 

 

  



 

 

Predictor 

variables 

Parameters Multiplie

rФ 

Error 

structure 

BIC 

b0 b1 b2 b3 b4 

C 3.90×10-3 0.53     Poisson 1.560 

Q 9.95×10-4 0.42     Poisson 1.589 

C, L 4.52×10-3 0.54 0.27    Poisson 1.595 

Q, C 2.11×10-4 0.30 0.51    Poisson 1.601 

Q, L 8.61×10-4 0.46 0.28    Poisson 1.622 

Q, C, L 2.28×10-4 0.31 0.50 0.27   Poisson 1.635 

C, L, ФNOPARKING * * *   * * * 

C, L, ФFLUSHMEDIAN 4.71×10-3 0.53 0.27   0.94 Poisson 1.641 

C, L, 

ФVERYLOWPARKINGUSE 

4.79×10-3 0.53 0.30   0.86 Poisson 1.641 

C, L, ФCYCLANE 4.56×10-3 0.54 0.27   0.99 Poisson 1.642 

Table A.5 – Cyclist Non-Turning Crashes (UCMN2) 

 

Predictor 

variables 

Parameters Multiplie

r Ф 

Error 

structure 

BIC 

b0 b1 b2 b3 b4 

Q, L, ФNOPARKING 4.39×10-5 0.97 0.42   0.25 k = 1.6 4.224 

Q, L 1.25×10-4 0.86 0.45    k = 1.3 4.261 

Q, C, L 3.55×10-5 0.80 0.33 0.44   k = 1.4 4.276 

Q, L, ФCYCLANE 8.34×10-5 0.89 0.46   1.34 k = 1.4 4.290 

Q, L, e(Ar/100) 3.62×10-5 0.96 0.35 0.00   k = 1.4 4.294 

Q, L, 

ФVERYLOWPARKINGUSE 

8.37×10-5 0.89 0.36   1.37 k = 1.4 4.297 

Q, L, e(As/100)   1.22×10-4 0.85 0.42 0.02   k = 1.4 4.299 

Q, L, ФFLUSHMEDIAN 1.27×10-4 0.86 0.45   0.97 k = 1.3 4.308 

C, L 7.02×10-2 0.43 0.43    k = 1.2 4.332 

Table A.6 – All Non-Turning Crashes (UAMN2) 

 

Predictor 

variables 

Parameters Multiplie

r Ф 

Error 

structure 

BIC 

b0 b1 b2 b3 b4 

QMOTOR, 1.00×10-2 0.15     Poisson 0.819 

QCYC 3.15×10-2 0.05     Poisson 0.820 

QMOTOR, ФCYCLANE 6.63×10-3 0.18    1.43 Poisson 0.845 

QCYC, QMOTOR 8.86×10-3 0.04 0.14    Poisson 0.848 

QCYC, QMOTOR, 

ФCYCLANE 

6.16×10-3 0.03 0.17   1.41 Poisson 0.874 

Table A.7 – Cyclist Signalised Crossroad Product of Link (UCXT0) 

 

  



 

 

Predictor 

variables 

Parameters Multiplie

r Ф 

Error 

structure 

BIC 

b0 b1 b2 b3 b4 

QMOTORr 3.71×10-4 0.67     Poisson 2.125 

QMOTOR, ФCYCLANE 4.41×10-4 0.65    0.91 Poisson 2.153 

QCYC, QMOTOR 3.39×10-4 0.03 0.66    Poisson 2.153 

QCYC,QMOTOR, 
ФCYCLANE 

4.07×10-4 0.03 0.65   0.90 Poisson 2.181 

Table A.8 – Motor Vehicle Signalised Crossroad Product of Link (UMXT0) 

Roundabout Cycle Crash Prediction Models 
Predictor 

variables 

Parameters Multiplie

r Ф 

Error 

structure 

BIC 

b0 b1 b2 b3 b4 

Qe, Sc 1.94×10-7 0.52 2.33    k = 1.2 1.020 

Qe, e(Sc) 4.75×10-5 0.52 0.08    k = 1.2 1.020 

Qe, Sc, ФMEL 1.79×10-6 0.36 2.00   1.91 k = 1.4 1.021 

Qe, ФMEL 1.20×10-3 0.37    2.16 k = 1.2 1.026 

Qe, Qc, Sc 6.12×10-8 0.47 0.26 2.13   k = 1.3 1.029 

Qe, Se 4.46×10-6 0.42 1.66    k = 1.1 1.031 

Qe 3.20×10-4 0.55     k = 1.0 1.031 

Qe, Qc, Sc, ФMEL 6.73×10-7 0.34 0.17 1.91  1.79 k = 1.5 1.034 

Qe, Sc, Se, ФMEL 1.05×10-6 0.32 1.68 0.58  1.87 k = 1.5 1.035 

Qe, Qc 2.49×10-5 0.48 0.37    k = 1.1 1.035 

Qe, ФMCL 6.36×10-4 0.45    1.67 k = 1.1 1.037 

Qc 8.79×10-4 0.44     k = 1.9 1.039 

Qe, V10 1.35×10-4 0.50 0.31    k = 1.0 1.040 

Qe, SSDe 2.19×10-4 0.53 0.44    k = 1.0 1.041 

Qe, SSDc 1.64×10-4 0.58 0.38    k = 1.0 1.042 

Qe, VLL 1.77×10-4 0.54 0.16    k = 1.0 1.044 

Qe, V40 1.70×10-4 0.54 0.19    k = 1.0 1.044 

Qe, ФGRADD 3.25×10-4 0.55    0.85 k = 1.0 1.045 

Qe, ФTJUN 3.20×10-4 0.55    1.12 k = 1.0 1.045 

Table A.9 – Entering v Circulating (Motor Vehicle Only) Model Parameters 

  



 

 

Predictor 

variables 

Parameters Multiplie

r Ф 

Error 

structure 

BIC 

b0 b1 b2 b3 b4 

Qe, e(Qe/100), SSDe 3.92×10-2 -0.53 0.03 1.50   k = 1.8 0.657 

Qe, e(Qe/100), SSDe, 

Se 

2.96×10-4 -0.53 0.02 1.32 1.59  k = 1.8 0.664 

Qe, SSDe 2.86×10-7 1.07 1.35    k = 1.9 0.669 

Qe, SSDe, Se 3.47×10-9 0.89 1.13 1.92   k = 1.0 0.672 

Qe, e(Qe/100) 9.63×10-2 -0.38 0.02    k = 1.7 0.672 

Qe, Se 1.73×10-9 0.83 2.76    k = 1.9 0.674 

Qe, SSDe, ФMEL 1.25×10-6 0.91 1.16   1.78 k = 1.0 0.678 

Qe, e(SSDe) 6.56×10-7 1.08 0.22    k = 1.9 0.678 

Qe, ФMEL 8.99×10-6 0.85    2.41 k = 1.8 0.682 

Qe 1.44×10-6 1.10     k = 1.7 0.682 

Qe, V10 4.87×10-7 0.99 0.50    k = 1.8 0.688 

Qe, V40 2.20×10-7 1.03 0.60    k = 1.8 0.690 

Qe, ФGRADD 1.02×10-6 1.13    2.22 k = 1.7 0.690 

Qe, VLL 4.44×10-7 1.05 0.38    k = 1.8 0.692 

Qe, ФTJUN 1.45×10-6 1.10    1.14 k = 1.7 0.696 

Table A.10 – Rear End (Motor Vehicle Only) Model Parameters 

 

Predictor 

variables 

Parameters Multiplie

r Ф 

Error 

structure 

BIC 

b0 b1 b2 b3 b4 

Qa, V10 6.36×10-6 0.59 0.68    k = 3.9 0.786 

Qa, e(V10) 3.86×10-5 0.65 0.01    k = 3.4 0.786 

Qa, VLL 3.31×10-6 0.65 0.65    k = 3.3 0.790 

Qa, V40 3.05×10-6 0.60 0.81    k = 3.9 0.791 

Qa 3.41×10-5 0.71     k = 2.1 0.796 

Qa, V10, Se 7.72×10-7 0.51 0.58 1.00   k = 3.9 0.797 

Qe, Se 5.08×10-7 0.54 1.77    k = 2.2 0.797 

Qa, ФGRADD 3.35×10-5 0.72    0.39 k = 2.4 0.805 

Qa, ФTJUN 3.52×10-5 0.70    2.01 k = 2.1 0.805 

Qe 3.60×10-4 0.50     k = 1.6 0.806 

Qe, SSDe 2.63×10-5 0.70 0.27    k = 2.0 0.809 

Qa, ФMEL 5.60×10-5 0.65    1.24 k = 2.2 0.809 

Table A.11 – Loss of Control (Motor Vehicle Only) Model Parameters 

  



 

 

Predictor 

variables 

Parameters Multiplie

r Ф 

Error 

structure 

BIC 

b0 b1 b2 b3 b4 

Qa, ФMEL 1.34×10-5 0.71    2.66 Poisson 0.568 

Qa 9.68×10-7 1.04     Poisson 0.569 

Qa, VLL 2.30×10-6 1.10 -0.34    Poisson 0.581 

Qe, SSDe 1.46×10-6 1.05 -0.43    Poisson 0.582 

Qa, e(Qa/100), ФMEL 1.61×10-4 0.41 0.002   2.60 Poisson 0.582 

Qa, e(Qa/100) 1.68×10-4 0.42 0.005    Poisson 0.582 

Qa, ФTJUN 9.10×10-7 1.05    0.45 Poisson 0.582 

Qa, V40 2.18×10-6 1.08 -0.31    Poisson 0.582 

Qa, V10 1.14×10-6 1.06 -0.10    Poisson 0.584 

Qa, ФGRADD 9.67×10-7 1.04    0.97 Poisson 0.584 

Qe, Se 1.02×10-6 1.04 -0.03    Poisson 0.584 

Table A.12 – Other (Motor Vehicle Only) Model Parameters 

 

Predictor 

variables 

Parameters Multiplie

r Ф 

Error 

structure 

BIC 

b0 b1 b2 b3 b4 

P, ФMEL 5.60×10-4 0.55    4.66 k = 1.4 0.882 

P, e(Qa/100) ФMEL 3.84×10-4 0.55 0.003   3.67 k = 1.8 0.889 

Qa, P, ФMEL 3.10×10-5 0.32 0.55   3.93 k = 1.6 0.891 

P, e(Qa/100) 3.45×10-4 0.60 0.01    k = 1.0 0.919 

Qa, P 1.58×10-6 0.68 0.59    k = 1.9 0.929 

P, Qa, e(Qa/100) 7.88×10-4 0.60 -0.10 0.007   k = 1.0 0.935 

P 8.41×10-4 0.61     k = 1.6 0.940 

P, SSDe 2.92×10-4 0.61 0.79    k = 1.6 0.945 

P, V10 1.38×10-4 0.64 0.40    k = 1.6 0.950 

P, V40 1.15×10-4 0.63 0.45    k = 1.6 0.950 

P, Se 3.64×10-3 0.58 -0.41    k = 1.5 0.955 

P, ФGRADD 8.58×10-4 0.60    1.14 k = 1.6 0.955 

P, ФTJUN 8.23×10-4 0.61    1.17 k = 1.6 0.955 

P, VLL 1.05×10-3 0.60 -0.05    k = 1.6 0.955 

Qa 2.46×10-5 0.71     k = 1.3 1.007 

Qa, e(Qa/100) 6.08×10-3 0.02 0.01    k = 1.3 1.016 

Table A.13 – Pedestrian Crossing Model Parameters 

 

  



 

 

Predictor 

variables 

Parameters Multiplie

r Ф 

Error 

structure 

BIC 

b0 b1 b2 b3 b4 

Qe, Cc 1.51×10-4 0.46 0.38    k = 1.2 1.230 

Cc 7.45×10-3 0.39     k = 1.0 1.236 

Cc, e(Qe/100) 5.41×10-3 0.38 0.01    k = 1.1 1.243 

Qe, Cc, Se 3.88×10-5 0.43 0.38 0.49   k = 1.2 1.245 

Cc, e(Cc/100) 5.06×10-3 0.58 -0.46    k = 1.1 1.245 

Cc, Se 2.59×10-4 0.39 1.01    k = 1.0 1.247 

Cc, ФGRADD 8.23×10-3 0.37    0.50 k = 1.0 1.247 

Cc, V40 1.41×10-3 0.40 0.39    k = 1.0 1.248 

Cc, Sc 6.63×10-4 0.38 0.74    k = 1.0 1.249 

Cc, VLL 1.69×10-2 0.38 -0.19    k = 1.0 1.250 

Cc, SSDe 1.08×10-2 0.37 -0.26    k = 1.0 1.250 

Cc, SSDc 5.32×10-3 0.40 0.27    k = 1.0 1.250 

Cc, ФTJUN 7.75×10-3 0.38    0.63 k = 1.0 1.251 

Cc, V10 5.33×10-3 0.39 0.08    k = 1.0 1.252 

Cc, ФMCL 7.49×10-3 0.39    0.99 k = 1.0 1.252 

Cc, ФMEL 7.43×10-3 0.39    1.00 k = 1.0 1.252 

Qe 3.27×10-4 0.51     k = 1.8 1.262 

Qe, e(Cc/100) 2.66×10-4 0.51 0.43    k = 1.8 1.264 

Qc 4.20×10-4 0.48     k = 1.8 1.264 

Qe, e(Qe/100) 1.28×10-6 1.26 -0.01    k = 1.8 1.268 

Table A.14 – Motorist Entering Versus Circulating Cyclist Model Parameters 

 

Predictor 

variables 

Parameters Multiplier 

Ф 

Error 

structur

e 

BIC 

b0 b1 b2 b3 b4 

Qa 2.33×10-7 1.13     Poisson 0.611 

Qa, Ca 2.07×10-7 1.04 0.23    Poisson 0.621 

Qa, VLL 5.76×10-7 1.22 -0.42    Poisson 0.622 

Qa, V10 3.84×10-7 1.22 -0.34    Poisson 0.624 

Qa, V40 8.25×10-7 1.19 -0.46    Poisson 0.625 

Qa, ФTJUN 2.13×10-7 1.14    0.52 Poisson 0.626 

Qa, Se 7.27×10-7 1.17 -0.49    Poisson 0.626 

Qa, ФMEL 4.42×10-7 1.05    1.24 Poisson 0.626 

Qa, SSDe 2.75×10-7 1.14 -0.22    Poisson 0.626 

Qa, ФGRADD 2.36×10-7 1.13    0.89 Poisson 0.627 

Qa, Ca, VLL 4.96×10-7 1.12 0.21 -0.36   Poisson 0.633 

Ca 2.27×10-3 0.35     Poisson 0.639 

Table A.15 – Other Cyclist Model Parameters 

  



 

 

Predictor 

variables 

Parameters Multiplier 

Ф 

Error 

structure 

BIC 

b0 b1 b2 b3 b4 

Qa, ФMEL 6.11×10-4 0.58    1.66 k = 2.2 2.611 

Qa, e(Qa/100), ФMEL 1.36×10-2 0.19 0.004   1.55 k = 2.3 2.617 

Qa, e(Qa/100) 1.85×10-2 0.15 0.005    k = 2.1 2.624 

Qa 2.18×10-4 0.71     k = 1.9 2.627 

Qa, Se 3.70×10-5 0.64 0.72    k = 2.0 2.632 

Qa, SSDe 1.56×10-4 0.70 0.31    k = 2.0 2.634 

Qa, V10 1.36×10-4 0.68 0.19    k = 1.9 2.636 

Qa, V40 1.63×10-4 0.70 0.09    k = 1.9 2.642 

Qa, ФTJUN 2.17×10-4 0.71    1.17 k = 1.9 2.642 

Qa, VLL 1.81×10-4 0.70 0.05    k = 1.9 2.642 

Qa, ФGRADD 2.17×10-4 0.71    1.08 k = 1.9 2.643 

Table A.16 – Total Crashes Model Parameters 

Traffic Signal Cycle Crash Prediction Models 

For models selection for signalised intersections crash prediction models please refer to Austroads 
Publication AP-R380/11, Effectiveness and Selection of Treatments for Cyclists at Signalised 
Intersection (2011). 

 



 

 

Appendix B 

Predictor Variable Information 



 

 

Mid-Block Cycle Crash Prediction Model Predictor Variables 
Abbreviation Definition 

A Annual number of crashes 

C Total two-way bicycle flow 

L Length of block in km 

Lns Number of lanes in one direction on approach 

Q Total two-way motor vehicle flow 

S Mean motor vehicle speed in km/h 

W Width of lane used by cyclists in m 

e Effective width of kerbside lane including vehicle and cycle lanes in m 

ФCYCLANE: Factor for the presence of a cycle lane 

ФFLUSHMEDIAN: Factor for the presense of a flush median 

ФNOPARKING: Factor if parking is prohibited on a particular block 

ФVERYLOWPARKINGUSE: Factor if parking is allowed but used very rarely on block 

ФMOTOR:  

ФCYC:  

Table B.1 – Definition of the Predictor Variables Used in the Mid-Block Models 

Roundabout Cycle Crash Prediction Model Predictor Variables 
Abbreviation Definition 

Qe Entering volume for each approach 

Qc Circulating flow perpendicular to the entering flow 

Qa Approach flow (the sum of the entering and exiting flow for each approach) 

ФMEL Multiple entering lanes 

ФMCL Multiple circulating lanes 

ФTJUN Intersections with three arms 

ФGRADD Downhill gradient on approach to intersection 

VLL Visibility from the limit line to vehicles turning right or travelling through the 

roundabout from their right 

V10 Visibility from 10 metres back from the limit line to vehicles turning right or 

travelling through the roundabout from their right 

V40 Visibility from 40 metres back from the limit line to vehicles turning right or 

travelling through the roundabout from their right 

SE Average free mean speed of entering vehicles travelling through the roundabout at 

the limit line 

SC Average free mean speed of circulating vehicles travelling through the roundabout 

as they pass each approach (adjacent to splitter island) 

SSDE Standard deviation of free speeds of entering vehicles at the limit line 

SSDC Standard deviation of free speeds of circulating vehicles as they pass the approach 

being modelled 

P Pedestrians crossing the approach in either direction 

Table B.2 – Definitions of the predictor variables used in the models 



 

 

Traffic Signal Crash Prediction Model Predictor Variables 

For predictor variable explanation for signalised intersections crash prediction models please refer to 
Austroads Publication AP-R380/11, Effectiveness and Selection of Treatments for Cyclists at 
Signalised Intersection (2011). 

 


