Life-cycle costing of rain and flood events in Queensland

Case studies and network-wide implications

Andrew Beecroft and Eddie Peters | ARRB Group
Tyrone Toole | Department of Transport and Main Roads

Engineering Technology Forum, 24 August 2016
Background

• **Purpose**
 – 2010-13 weather events in Queensland reveal that the network is more exposed to damage than desirable or originally thought
 – Government has challenged Transport and Main Roads to review and amend its pavement management practice to decrease this exposure to road asset damage in a cost-effective manner

• **Asking the question**
 – “What are the economic benefits of improving the ability of the road network to better withstand the effects of flooding events, and how might it be done?”
Project milestones

- Background on the rain/flood events and TNRP
- Developed analysis methodology and case study selection criteria
- Identified 7 case studies including background data

- Two site visits to case study links
 - Observations and feedback included:
 - Table drains blocked/inadequate
 - Identified the need to do drainage maintenance well
 - Low cost treatments in past have not performed well
 - Still many sections “waiting to fail next time”
 - Maintenance/rehab/reseal funding is tight and can’t cover everything
Case studies

- 7 case studies analysed with model developed by ARRB

<table>
<thead>
<tr>
<th>Base case: What actually happened</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Models network prior to events and TNRP response</td>
</tr>
<tr>
<td>• Real data on closures, reconstruction costs, road condition</td>
</tr>
<tr>
<td>• Reconstruction based on damage incurred</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option 1: ‘Full resilience’</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Extensive rehab work required to make the link fully resilient</td>
</tr>
<tr>
<td>• Network nearly immune from all flood effects</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option 2: ‘Stitch in time’</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Shortened reseal and rehabilitation intervals</td>
</tr>
<tr>
<td>• Reduced network vulnerability leads to reduced repair bill and lower ongoing maintenance</td>
</tr>
<tr>
<td>• More cost-effective rehabilitation options</td>
</tr>
</tbody>
</table>
Total transport costs

Cost

- Excess transport costs
- Budget shortfall
- Minimum transport cost
- Sum of costs
- Agency’s total maintenance cost
- Road user cost

Level of service / maintenance standard

- Actual budget
- Optimum budget

AN INITIATIVE BY:
Modelling and assumptions

Source data

- TMR sourced input data for model, including ARMIS
- each case study link is broken into 1km sections

Calculate vulnerability

- model determines vulnerability using data on:
 - soil type (reactive vs non-reactive)
 - seal width (lower seal width = higher vulnerability)
 - seal age (older seals more vulnerable)
 - pavement age (older pavements have higher vulnerability)

Calculate condition

- Model determines condition using data on:
 - Rutting 80th percentile value
 - Roughness (IRI)
Results

• 30 year life cycle cost analysis (2006–35)
 - Option 1 generally not advantageous
 – very high agency costs, not recovered
 – viable on higher order roads and with low discount rate
 - Option 2 appears to lead to savings
 – agency costs are same or lower with targeted spending
 – reduced impact of rain/flood events leads to significant life cycle cost savings
Can a change in agency costs lead to significant long-term savings in accident and road user costs?

<table>
<thead>
<tr>
<th>Change compared to base case for:</th>
<th>Option 1</th>
<th>Option 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase in agency costs</td>
<td>$1,728 million</td>
<td>$105.9 million</td>
</tr>
<tr>
<td>Reduction in accident costs</td>
<td>$88.4 million</td>
<td>$40.3 million</td>
</tr>
<tr>
<td>Reduction in vehicle operating costs</td>
<td>$253.8 million</td>
<td>$162.1 million</td>
</tr>
<tr>
<td>Savings from reduced travel time</td>
<td>$211.5 million</td>
<td>$95.4 million</td>
</tr>
<tr>
<td>Freight delay savings</td>
<td>$38.9 million</td>
<td>$17.6 million</td>
</tr>
<tr>
<td>Savings from fewer trip cancellations and alternate mode trips</td>
<td>$989.5 million</td>
<td>$412.0 million</td>
</tr>
<tr>
<td>Overall change to net present value</td>
<td>$146.5 million</td>
<td>$621.5 million</td>
</tr>
</tbody>
</table>
Observations and outcomes

• Generally beneficial to spread works over greater time
 – Cheaper construction per/km (more competition)
 – Freight vehicles only encounter one/two disruptions along route
• Greater seal age was an indicator of likelihood to require TNRP works
• Strong case for sealing Peninsula Development Road
• Excluding PDR, Option 2 generates larger returns on higher volume roads
• Most western Queensland areas have not had a serious ‘test’ since 2013
Modelling performance of aged seals

- Evidence of aged seals (past target age) showing rapid deterioration and susceptibility to flood damage
- Model modified to include accelerated deterioration rate for seals over target age
 - Compared base case to option cases with typical seal age, typical minus 3 years and plus 3 years
- Shortening or extending seal lives found mixed results on the overall net present values
- Option 1 best suited with maintaining target age, Option 2 at maintained or extended seal age
Future climate and weather

- Climate change impact on Queensland:
 - more Category 3-5 cyclones
 - cyclones impacting further south
 - stable or decreased rainfall with equal or fewer heavy rain events
 - However, extreme rainfall events likely to be more intense
 - sea level rise of 1m+ by 2100
- Road pavements built for 20-30 years are especially vulnerable
- The model can incorporate various future scenarios

Projected increase in extreme rainfall events in northern, eastern and central Australia

Source: CSIRO (2015) - Climate Change in Australia: Projections for Australia's NRM Regions
Varying event recurrence intervals

- Uncertainty in future climate variables
- Analysis of shortened recurrence interval presents 'worst case' climate scenario
- Both Option 1 and Option 2 indicate high sensitivity to shortened interval
- Much higher cost savings if more regular extreme events
- Should this be considered when designing pavements for 30+ years?
Discussion and recommendations

• Many lessons learnt from 2010–13 period
• Events of this magnitude and breadth are likely in the future
• Investment strategies will have an increasing need to consider the likelihood of major weather events to build greater resilience into the network
• Modelling has shown us that…

Major routes
• benefit from high investment to create fully resilient pavements
• considerable value in maintaining passability

Rural highway network
• need assessment for vulnerability
• critical routes benefit from increased resilience
• targeted investment

Development roads and remote links
• too expensive to impart full resilience for low traffic volumes
• important to maintain basic connectivity
Next steps

• Data and modelling through agencies such as the Bureau of Meteorology could allow predictive modelling of relative flood/cyclone risk each year
 – Could this be used to develop a funding apparatus for rural networks?

• Vulnerable pavements could be identified by combining river/creek mapping with pavement structural data
 – Will this allow more efficient prioritisation of pavement maintenance and rehab?

• Are funding models appropriate? NDRRA-style joint funding has benefits but requires strong ongoing commitment from Commonwealth
 – In times of austerity, will Commonwealth funding always be accessible?
Thank you

Any feedback, thoughts, suggestions...
andrew.beecroft@arrb.com.au