6 Remediation of existing slopes and embankments .. 31
6.1 Design life for remediation works .. 32
6.2 FOS to be used in the remediation design .. 32
7 High risk temporary work design ... 32
8 References ... 34

Table

Table 2.2 – Settlement criteria .. 5
Table 5.7.4-A – Minimum FOS .. 29
Table 5.7.4-B – Geometric details of wall .. 29
Table 6.2 – Consequence class and minimum FOS for remediation design 32

Figures

Figure 2.4 – An example of sidelong embankment with basal and toe drains 11
Figure 2.5 – Example of a batter protection within Structure Zone .. 13
Figure 5.7.2 – Typical boulder wall section .. 29
1 Introduction

a) The following clauses of this document define the minimum geotechnical requirements, which shall be met in the design for all projects. The requirements stipulated here are the minimum geotechnical requirements and do not preclude the Designer from using other proven methods in addition to those identified within this document. Some construction requirements that may impact the designs are also included.

b) Scope briefing for all geotechnical works shall be acceptable to Transport and Main Roads Geotechnical Section before the commencement of any geotechnical site investigation. Geotechnical site investigation shall be carried out in accordance with AS 1726:2017 and logging of encountered subsurface materials during geotechnical investigation shall be in accordance with the departmental Guideline on Geotechnical Logging. Where there is a conflict between AS 1726 and this Geotechnical Design Standard (GDS), the content of this GDS shall take precedence.

c) All geotechnical design reports, including drawings, shall be submitted to Transport and Main Roads Geotechnical Section in electronic format (and hard copy if requested) for review. The reports shall state clearly the assumptions, the justification of adopted geotechnical profiles, parameters and the methods adopted in design and address all relevant issues or concerns for the design element in question. The reports shall also include geotechnical long and cross sections together with the site investigation location plan(s) drawn to the same horizontal scale for each design element.

d) When the reports are submitted in stages (for example, concept, business case, detailed design stages and so on), each report shall be a standalone report. At the end of the full review process, a final standalone geotechnical report, including geotechnical field and laboratory data, interpretative design report(s) as per Clause 1(c) shall be submitted to Transport and Main Roads Geotechnical Section through the Administrator for their record.

e) The design calculations, duly documented as the design work progresses, shall be provided, on request, to the Administrator. The Administrator shall provide these reports to Transport and Main Roads Geotechnical Section.

Notes:

1. Wherever the 'Administrator' is referred in this document, it shall be replaced with 'Project Manager' for design only Contracts.

2. Wherever "Transport and Main Roads Geotechnical Section" is referred, the contact person shall be Director (Geotechnical) or his / her nominee.
f) The design, construction, maintenance and monitoring of earthworks and associated protective treatments shall ensure that permissible movement or performance of the pavement meets the requirements set out in the departmental Pavement Design Specifications and that post-construction in-service movements and both subsurface and surface water flows at any time do not:

i. impair or compromise pavement support

ii. impair or compromise support of structures and / or

iii. cause pavements to fail to meet the department’s pavement performance criteria, provided regular programmed maintenance is undertaken to ensure the durability of the assets.

g) Under special circumstances, the Contractor / Designer may seek exemption (or departure) from compliance with clauses in this document. In order to obtain such an exemption, the Contractor / Designer shall undertake a geotechnical risk assessment that demonstrates to Transport and Main Roads Geotechnical Section why such an exemption is being sought and under what special circumstance(s).

In addition to the risk assessment, the Contractor / Designer must provide a written report which details how the proposed exemption (non-compliance) will not compromise the performance standards stipulated in this document, covering safety, durability, future performance, constructability and maintenance aspects.

The risk assessment and report must be submitted formally through the Administrator to Transport and Main Roads Geotechnical Section. Consent to proceed with any proposed departure will be solely at the discretion of Transport and Main Roads Geotechnical Section.

Should a departure be consented, the Administrator or Transport and Main Roads Delegate will accept or reject this exemption through written correspondence.

h) All geotechnical reports shall be certified by a Registered Professional Engineer of Queensland (RPEQ) Geotechnical Engineer.

i) The designs carried out using numerical models, such as (but not limited to) Finite Element Method (FEM), shall be checked and certified by suitably qualified geotechnical engineer(s) with:

i. specialist knowledge in soil mechanics and the theory behind the numerical method adopted, and

ii. a minimum five years of hands-on experience in numerical modelling.

The design calculations carried out using numerical modelling shall be submitted in a summary form, including:

- input parameters, ground and constitutive models used with justification
- construction stages assumed, and
- the model discretisation adopted and the outputs for all construction stages critical to the design.

The outputs from numerical calculations / models must be validated / checked using simple hand calculations, another numerical method or empirical methods.
For critical designs or where the design outcomes are disputed by the reviewer(s), complete electronic input and output files shall be submitted, upon request, for verification.

2 Embankments

2.1 General requirements

Notwithstanding the requirements stipulated in the department’s Technical Specification MRTS04 General Earthworks, the following also shall apply:

a) Unreinforced embankment batter slopes shall not be steeper than:
 i. 1 (vertical) to 2 (horizontal) for earth-fill, and
 ii. 1 (vertical) to 1.5 (horizontal) for rockfill.

b) For embankments in earth-fill, the vertical height of any single continuous batter shall not exceed 10 m. A minimum 4 m wide bench shall be provided at the top of any 10 m high single continuous batter in an earth-fill embankment for erosion control and maintenance purposes. The bench and the batter must be adequately protected against erosion. Berm drain shall be provided at each bench as per MRTS04 General Earthworks.

c) Designer may eliminate benches for rockfill embankments up to 20 m high.

d) Spill-through embankments for bridge structures shall be designed as a standalone element complying with department’s Technical Specification MRTS03 Drainage, Retaining Structures and Protective Treatments.

e) Material requirements within Structure Zone are provided in MRTS04 General Earthworks.

f) Where additional construction requirements exist, a Supplementary Specification must be produced for the construction of the embankment.

2.2 Performance standards

a) Embankments and their foundations shall always be stable. For embankments constructed over soft foundations, regular instrumentation monitoring and the plotting of settlements, lateral movements and pore pressure development over time shall be carried out to aid in the demonstration of compliance with minimum FOS during construction. These data shall be provided through the Administrator to Transport and Main Roads Geotechnical Section for review.

b) Post-construction in-service movements shall not impair or compromise pavement support and shall not exceed permissible pavement movement requirements as per departmental pavement design specifications.

c) The materials and construction methods used for embankments shall ensure that embankments will not be susceptible to cracking due to seasonal moisture changes, tunnelling or rill erosion.

d) At the end of construction, any in-service total settlement of the embankments shall not compromise the flood immunity requirements.

e) Any in-service movements shall not cause the cross-section profile to deform so as to compromise efflux of subsurface drainage or increase the depth of flow of surface run-off.
Design and maintenance shall address treatment options to accommodate cross-section profile deformation.

f) Embankment settlements and lateral movements of the subsoils shall not adversely impact on existing and / or new structures, earthworks and public utility plant (PUP) infrastructure that would compromise their serviceability and / or structural integrity.

g) Batter erosion control measures such as revegetation and surface drainage shall be included in the design to minimise erosion and deterioration of the embankment batters.

h) The ‘Structure Zone’ is defined as a length not less than 25 m (except for Lower Speed Roads) within the approach to any structure (bridges, culverts, piled embankment, and so on). For Lower Speed Roads, length of the Structure Zone can be reduced to 10 m in consultation with Transport and Main Roads Geotechnical Section.

The maximum permissible total in-service settlements (within the first 40 years in service) within the Structure Zone and away from the Structure Zone are given in Table 2.2.

Lower Speed Roads: Roads with post speed limit less than or equal to 70 km/h are defined as Lower Speed Roads for the purpose of implementation of this standard.

i) If a culvert is designed as a floating culvert, the Structure Zone can be eliminated; however, total in-service settlement (including creep) of major culverts shall not be more than 50 mm in order to assure the structural integrity of the culvert over their 100 year design life, preventing potentially adverse impacts from differential settlements and other unknown effects.

Floating Culvert: A culvert that will settle together with its approach and supporting embankment with time is termed as floating culvert for the purpose of implementation of this standard.

Major Culvert: A major culvert in Geotechnical context meets at least one of the following criteria:

- i. width greater than 1.2 m for box or steel arch culverts;
- ii. height greater than 1.2 m for box or steel arch culverts;
- iii. diameter greater than 1.5 m for reinforced concrete pipe culverts;
- iv. multiple culverts spanning more than 2 m longitudinally (i.e. along the road centreline) at one location.

j) If the differential settlement exceeds the values given in Table 2.2, the Contractor shall undertake the following:

- i. For flexible and concrete pavements surfaced with asphalt, re-profile the pavement to the original design level or an alternative road surface geometry that complies with the design requirements of the Contract, prior to practical completion and during the Defect Liability Period.
- ii. For concrete pavements not surfaced with asphalt where unplanned cracking has occurred, the Contractor shall ‘slab-jack’ the pavement with a suitable medium and process to restore the original design level or an alternative road surface geometry
that complies with the design requirements of the Contract, prior to practical completion and during the Defects Liability Period.

Where unplanned cracking in the concrete base has occurred, the Contractor shall, unless approved otherwise by the Administrator, remove and replace the cracked slabs with new pavement in accordance with MRTS40 Concrete Pavement Base.

Notes:
Wherever the term ‘Defect Liability Period’ is referred in this document, it shall be replaced with:
1. ‘Defect Correction Period’ for Design and Construct Contracts using a Collaborative Project Agreement; and
2. ‘Maintenance Period’ for a Public Private Partnership.

k) To confirm that the performance of embankments meets the requirements stipulated in Clause 2.2, the Contractor shall carry out adequate instrumentation monitoring and analyses. Before handing over the asset to the department at the end of Defect Liability Period, the Contractor shall demonstrate that the performance of embankments complies with the settlement criteria defined in Table 2.2. That is, the projected settlements based on the monitoring shall be less than the permissible amounts. The extrapolation of settlement over the design period for compressible subsoil areas shall be carried out using Asaoka’s (1978) method in addition to any other method(s).

Table 2.2 – Settlement criteria

<table>
<thead>
<tr>
<th>Location</th>
<th>Maximum total in-service settlement permissible within 40 years of pavement construction (Design and handover requirement)</th>
<th>Maximum differential settlement at any time (Design and handover requirement)</th>
<th>Maximum differential settlement at any time (Intervention requirement)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rail embankments</td>
<td>Road embankments</td>
<td></td>
</tr>
<tr>
<td>Within Structure Zone (as per Clause 2.2(h))</td>
<td>40 mm</td>
<td>50 mm</td>
<td>Design change of grade due to differential settlement over any 5 m length of pavement shall be limited to 0.5% for sprayed seal granular asphalt over granular and full depth asphalt pavements and 0.3% for all other pavement types, in any direction of the carriageways.</td>
</tr>
<tr>
<td>Away from Structure Zone</td>
<td>150 mm</td>
<td>Sprayed seal granular, asphalt over granular, full depth asphalt and continuously reinforced concrete pavements, 200 mm. Other pavement types, 100 mm.</td>
<td></td>
</tr>
</tbody>
</table>

Note: In addition to meeting the design change of grade requirements due to differential settlement, the pavement shall meet the requirements of ‘Aquaplaning’ as per the department’s Road Drainage Manual.
2.3 Geotechnical design for unreinforced embankments

a) The geotechnical design report shall include the following:
 i. the development of geological models, which depict the stratigraphy of the subsurface materials with delineation of potential drainage boundaries
 ii. the interpretation of subsurface strata along with their geotechnical properties / parameters and the adopted design strength and compressibility parameters – the adopted design strength and compressibility parameters shall be justified
 iii. the design pore water pressures, both the existing and the anticipated worst conditions, shall be adopted where relevant with justification
 iv. stability analyses in accordance with the requirements in Clause 2.3(b)
 v. settlement analyses in accordance with the requirements in Clause 2.3(c)
 vi. the development of a geotechnical monitoring program (as per Clause 2.8), in respect of possible pore water pressures and/or embankment/subsoil movements during construction and maintenance, must include Transport and Main Road’s long term maintenance after completion of the construction contract, and
 vii. anticipated construction related issues including, but not limited to, the rate of filling.

b) Stability analyses for the geotechnical design of embankments shall incorporate and comply with the following:
 i. Design philosophy:
 • Limit equilibrium methods based on traditional FOS (that is, Factor of Safety from two-dimensional limit equilibrium analyses) shall be used.
 • Soft clay foundations shall be modelled for short-term behaviour using total stress analysis (that is, 'Total Stress Basis'), as well as for long-term (in-service) behaviour using effective stress parameters ('Effective Stress Basis').
 • The embankment material shall be modelled using drained strength parameters (that is, 'Effective Stress Basis').
 • The minimum FOS during construction (short-term) shall be 1.30 and in-service (long-term) shall be 1.50.
 • The following potential modes of failure shall be investigated where relevant:
 − both circular and non-circular slip surfaces
 − sliding failure across the top of basal reinforcements
 − bearing capacity failure, and
 − settlement of the embankment, resulting from excessive elongation of the basal reinforcement.
 • Global stability analyses shall confirm that the embankment foundation is not subject to long-term creep movements of pre-existing landslides or other forms of intrinsic land instability.
• The influence of any disturbance due to ground improvement schemes and the loading imposed by the proposed constructions on any adjacent structures and earthworks elements and services shall be investigated and reported.

• The relevance of seismic stability issues shall be investigated.

• Sudden drawdown effects, if relevant, shall be checked (refer Clause 2.5b).

• The minimum FOS for rapid drawdown and seismic condition shall be 1.20 and 1.10 respectively, while supporting live load as specified in this document (see Clause 2.3b(ii)).

ii. Loads and geometry:

- Minimum of 20 kPa (for roadway) uniformly distributed live loading for long-term conditions and a minimum of 10 kPa uniformly distributed live loading for initial construction shall be adopted across the top of the embankment cross-section. For footpaths and cycleways, 10 kPa shall be used for long-term conditions unless need for larger vehicles.

- The impact of any existing excavations and / or known proposed (or future) excavations on the embankment stability shall be assessed.

iii. Material parameters:

- The minimum unit weight of embankment materials shall be 20 kN/m³ unless otherwise substantiated by the use of lightweight material.

- Embankment shear strength parameters for earth-fill shall not exceed \(c' = 5 \) kPa and \(\Phi' = 30 \) degrees (for ‘Class A1’ and ‘Class B’ materials as per Table 14.2.2 in MRTS04) while for rockfill, \(\Phi' = 40 \) degrees.

- For embankment greater than 10 m height, laboratory shear strength testing, for example, triaxial CU tests with pore water pressure measurements as a minimum, shall be carried out on re-compacted samples to evaluate the shear strength of the embankment fill materials if other than ‘Class A1’ or ‘Class B’ materials or rockfill as per MRTS04 are intended to be used.

- Design geotechnical parameters adopted in the assessments shall be a moderately conservative value which is typically above the lower quartile value but lower than the median value when characteristic values are determined by appropriate Probability Density Function (PDF) such as a lognormal PDF.

iv. Geotechnical model:

Scaled cross-sections of the embankment with subsurface models depicting the design material properties, representative ground water condition, and ground improvement elements and their associated design parameters shall be established.
v. Method of analysis:

Two-dimensional Morgenstern and Price method shall be the primary method of limit equilibrium analysis.

In addition to this deterministic analysis either a sensitivity or probabilistic analyses is required for all GE3-related works:

- for a sensitivity analysis, the material strength shall be varied by one standard deviation
- for a probabilistic analysis, a lognormal distribution shall be considered.

vi. Software:

Industry accepted software SLOPE/W shall be used to carry out limit equilibrium analyses required by Clause 2.3(b)(i). The submission shall include critical sections analysed, and if requested by the reviewer, the data files compatible with SLOPE/W software shall be submitted to the Administrator who shall forward them to Transport and Main Roads Geotechnical Section for further review.

vii. Presentation of stability analysis:

The geotechnical design documentation shall include a report on the embankment stability analyses. The embankment stability analyses report must:

- clearly indicate the geotechnical models, design strength parameters and pore water pressure conditions adopted, and the assessment method – these shall be supplemented with design calculations where appropriate
- include cross-sections with chainages marked. These cross-sections shall show the centres of slip circles investigated and shape of the most critical circle or non-circular surface for the different critical stages of the embankment construction phase and for the design life.

C) Settlement analyses for geotechnical design of embankment(s) shall comply with and address the following:

i. Design philosophy:

- Settlement analysis based on Terzaghi’s one-dimensional consolidation theory shall be used as the primary method; however, it does not exclude the use of other validated theories currently in practice with a clear justification for the departure that may be accepted at the sole discretion of Transport and Main Roads Geotechnical Section.

Where primary consolidation under the applied embankment loads is not envisaged, settlement assessment may be based on elastic analysis and published correlations for time-dependent settlement.

- The influence of strain rate effects, temperature and structural phenomena shall be addressed where relevant.

- Secondary consolidation of the foundation (creep) shall be taken into account.
• The influence of continuing deformations, both vertical and horizontal, imposed by the proposed construction on any adjacent structures and earthworks elements and services shall be investigated and addressed.

• The performance of existing services or adjacent structures or infrastructures in the light of settlements induced by the new construction should be documented as part of the design process.

• The influence of preloading, surcharging, staging and ground modification shall be investigated with respect to both primary and secondary settlements.

• Creep of the embankment itself where relevant (for instance, in high embankments) shall also be taken into account in the long-term settlement calculations.

ii. Geotechnical model:

The geotechnical model for settlement analysis must clearly show the following:

• natural moisture content compared with liquid limit

• the profiles of pre-consolidation pressure

• coefficient of volume compressibility (m_v)

• compression index (C_v)

• recompression index (C_r)

• initial void ratios

• coefficient of consolidation (c_v)

• coefficient of secondary compression (that is, creep coefficient), and

• adopted over-consolidation ratios (if applicable).

Any embedded sand layers must also be shown. Where primary consolidation of the foundation will not occur under the applied embankment loads, the geotechnical model shall include elastic moduli for each geological unit and parameters used in the assessment of time dependent settlement.

iii. Settlement parameters:

In assessing the geotechnical parameters for settlement analyses, their stress dependence shall be taken into consideration, if applicable.

iv. Presentation of settlement calculations:

The geotechnical design documentation shall include a report on the embankment settlement analysis. The embankment settlement analysis report shall:

• clearly indicate the critical geotechnical design profiles with design settlement parameters, drainage boundary conditions adopted, design standards complied with and loading conditions adopted, and

• provide the settlement time history plots along with the embankment location.
2.4 Additional design requirements for side-long embankments

Embankment foundations shall be excavated to a competent material in accordance with the design and as assessed / verified by an experienced RPEQ Geotechnical Engineer / Engineering Geologist after stripping all loose materials and / or uncontrolled fill. Designs must define the expected depth to a competent material for the foundations.

Side-long Embankment:
Side-long embankments are road embankments along the side of natural slopes (or hills). Often the road is constructed by excavating material from the uphill side and placing it on the downhill side to form a level surface.

Surface and subsurface drainage design should consider both existing and future worst anticipated groundwater conditions, magnitude of rainfall events, topography and nature of anticipated maintenance over the design life of the road.

For side-long embankments traversing natural slopes of greater than 14º (that is, greater than 1 (vertical) to 4 (horizontal)), the following drainage measures shall be addressed in the design, especially for an embankment height greater than 10 m (toe to crest):

- a) toe drainage, and
- b) basal drainage (longitudinal and transverse drains).

These are subjected to groundwater conditions and the size of the site catchment area.

An example is presented in the sketch below (see Figure 2.4) for clarity.
Figure 2.4 – An example of sidelong embankment with basal and toe drains

(a) Typical cross section

(b) Plan view showing typical drain layout
2.5 **Embankment subject to permanent/semi-permanent toe inundation**

| Permanent inundation: | where an AEP 5% ARR2016 flood event with climate change in the relevant creek or river is predicted to inundate the toe of the embankment for a duration equal to or greater than 12 hours. |
| Semi-permanent inundation: | where an AEP 5% ARR2016 flood event with climate change in the relevant creek or river is predicted to inundate the toe of the embankment for a duration of less than 12 hours. |

The following additional requirement shall be fulfilled in the design and construction of embankments subject to permanent and / or semi-permanent inundation:

- Embankments below permanent or semi-permanent inundation levels shall be constructed with moisture insensitive material with respect to strength, dispersion and volume reactivity in addition to satisfying the requirements of Clause 14.2.5 *Water Retaining Embankments* of MRTS04 *General Earthworks*.

- Approach Embankments to bridges over watercourse and culverts within waterways, the following further additional requirements shall be fulfilled in the design and construction of embankments (within the structure zone) subjected to permanent and / or semi-permanent inundation:
 - The batters of the embankments below permanent and semi-permanent inundation levels shall be covered by a material such as sheet filter that prevents fines from leaching from the embankment during all conditions, including scour and drawdown.
 - The surface of the sheet filter material shall be covered by outer sheathing materials that:
 - meet the urban design requirements in accordance with the department's *Road Landscape Manual*
 - have a design life of 100 years
 - hold the sheet filter material in place under all conditions and protects it from degradation
 - are flexible and accommodate potential movements in the embankment
 - protect the embankment batters from any damages including damage caused by flood flows, and
 - include treatments that address hydrostatic pressure and pore water pressure where appropriate (such as weepholes).

Additional requirements for the batters of the embankments below permanent inundation:

- the outer sheathing materials shall be a water-resistant material, and
- include a toe wall that must be sufficiently deep to prevent the embankment and the outer sheathing materials being undermined by any changes in the watercourse.

An example of batter protection is shown in Figure 2.5. Grouting of the rockfill is not required for semi-permanent inundation case. Spill-through embankments shall also be designed as per Clauses 45 to 49 of MRTS03 *Drainage, Retaining Structures and Protective Treatments*.
In addition, the following requirements shall also be met:

a) Further to Chapter 10 Floodway Design of the department's Road Drainage Manual and notwithstanding the above requirements, embankment batters shall be designed and protected to ensure that the road can be opened to traffic following any flood up to an AEP 1% ARR2016 flood event.

b) The stability analyses of embankments subject to permanent and semi-permanent inundations shall demonstrate their safety against flood velocities, seepage forces, drawdown effects and ponding/wave action. Water level within the embankment for drawdown analysis shall not be lower than permanent inundation level.

Embankments with flood immunity less than AEP 1%, shall be assessed and treated to mitigate potential flood damage in accordance with departmental requirements including the department's Road Drainage Manual.

Figure 2.5 – Example of a batter protection within Structure Zone

2.6 Reinforced embankments

For reinforced embankments with face angle up to 70 degrees from the horizontal, the primary method of design shall conform to British Standard 8006 (BS 8006) in addition to the requirements stipulated in Clause 2.3. Embankments with face angle steeper than 70 degrees are considered as a Reinforced Soil Wall (or Reinforced Soil Structure) and Clause 5.5 shall apply.

2.7 Ground improvement

Any ground improvement schemes adopted shall either have proven local success (under similar geological conditions) or shall be demonstrated to be appropriate for the site conditions. The demonstration shall be via:

a) detailed analyses presented as a report, which shall be submitted to the Administrator for independent review by Transport and Main Roads Geotechnical Section, or

b) conducting appropriate field trials (that shall be accepted at the sole discretion of Transport and Main Roads Geotechnical Section) to demonstrate that the proposed method is capable of satisfying critical performance aspects presented in Clause 2.2.
2.8 **Geotechnical instrumentation monitoring for embankments**

a) The geotechnical monitoring program for embankments, where relevant (refer to Clause 2.3a (vi)), shall be documented on the drawings.

b) The geotechnical monitoring program for embankments shall:
 i. address the instrumentation provisions for monitoring of pore water pressures, embankment and subsoil movements, with justification for their use, and the design objectives they are expected to clarify, and
 ii. detail the nature of the instrumentation, the locations (physical surveys with ‘x’, ‘y’, ‘z’ coordinates) within the ground where the instruments are to be installed (on cross-sections), monitoring frequency and contingency plans with other relevant details.

c) The geotechnical monitoring program for embankments shall be implemented and maintained throughout the construction of embankments and pavements.

d) All geotechnical instruments shall be protected from vandalism and construction activities over its operational life. Damaged or malfunctional instruments shall be reinstated or reinstalled immediately to reduce the impact on the monitoring program.

e) Instrumentation at identified critical locations shall be provided to enable the continuation of monitoring of critical elements during the Defect Liability Period or maintenance period (whichever is longer) of the project.

f) All monitoring data and reports shall be submitted through the Administrator to Transport and Main Roads Geotechnical Section in electronic form.

g) The department’s preferred method of capturing and storing of monitoring results is to use a web-based data acquisition system. Consideration shall be given to adopting this method including Transport and Main Roads Geotechnical Section access to both live and historical information, and robust archiving methods (for access later).

2.9 **Maintenance**

a) The ongoing geotechnical monitoring program for embankments shall be developed by designer and agreed by Transport and Main Roads Geotechnical Section. This program shall continue to be implemented and maintained throughout the Defect Liability Period or maintenance period (whichever is longer) until the Final Completion and may be continued by the department for longer term maintenance.

b) In addition to the geotechnical instrumentation monitoring:
 i. the Designer / Contractor shall select locations for the physical survey monitoring program to establish longitudinal and transverse settlement profiles and other movements as required to confirm the performance standard in Clause 2.2, and
 ii. visual inspections and straight edge measurements shall be undertaken to capture surface subsidence and deformations.

c) The geotechnical monitoring program for embankments shall include the production of inspection reports, interpreted instrumentation monitoring reports and improvement works reports.
d) The results of the embankment geotechnical monitoring program during the Defect Liability Period shall be used:

i. to assess the need for any remedial / maintenance works

ii. in the design of remedial works, if required, and

iii. to assess any requirements for ongoing monitoring.

e) At the Final Completion, the following information must be provided to the Administrator:

i. all monitoring data in electronic format, and

ii. details of all active instrumentation for further monitoring by the department.

The Administrator will forward this information to Transport and Main Roads Geotechnical Section for review and acceptance of performance.

3 Cut slopes

3.1 General requirements

a) Unreinforced cuts: cut slopes shall not be steeper than 2 (vertical) to 1 (horizontal). The maximum vertical height of any single continuous cut shall, in most cases, not exceed 10 m. A minimum 4 m wide bench shall be provided for erosion control, control of rockfall and maintenance purposes at the top of any 10 m-high single continuous cut slope.

The bench and the batter must be adequately protected against erosion. Berm drain shall be provided at each bench as per MRTS04 General Earthworks. Cuts in erodible or dispersive geology may require different strategies, for example, flattening without benches.

Needs for such cut slope treatments shall be submitted to Transport and Main Roads Geotechnical Section in writing and agreed prior to its implementation.

b) Reinforced cuts: reinforced (for example, soil nail / rock dowel walls) cut slopes shall not be steeper than 10 (vertical) to 1 (horizontal). A minimum 4 m wide bench at every 10 m in height as in Clause 3.1(a) shall be provided.

3.2 Performance standards

a) The cut slopes shall be stable both in the short and long terms and shall require low whole-of-life maintenance, with due consideration of the influence of local climatic and geological conditions on stability and erosion issues.

b) Suitable construction techniques and interventions during construction and maintenance shall ensure to mitigate the impact on road users, local residents and their dwellings, commercial properties, services and the environment.

c) Slope protection measures shall be carried out in a timely fashion to mitigate the development of stability and erosion issues and deterioration of the cut face. The slope treatments shall incorporate finishes aesthetically compatible with the surrounding streetscape and environment.

d) Where ground reinforcement techniques are used, proof testing of selected slope reinforcement elements shall be carried out as required by the relevant Standards and departmental Technical Specifications.
3.3 Design requirements

3.3.1 General

A geotechnical risk assessment based on preliminary analyses shall be carried out to identify whether the issues in Clauses 3.3.2 and 3.3.3 need to be addressed in order to satisfy the performance standards stipulated in Clause 3.2. This risk assessment shall be submitted through the Administrator to Transport and Main Roads Geotechnical Section, who will advise on the suitability of the risk assessment. A written confirmation, stating that the department has no objection to the risk assessment, must be obtained from the Administrator before the requirements under Clauses 3.3.2 and 3.3.3 are dispensed with. A representative groundwater condition shall be considered in the design. Particular attention shall be given to long-term stability conditions as this would be generally critical for cut slopes and excavations.

3.3.2 Unreinforced cuts

a) The geotechnical design for a cutting shall include:
 i. the development of design geological profiles, which show the different subsurface strata with their lithologies, weathering states and structural defects, where practicable, based on factual data, geological mapping, borehole imaging and knowledge of local geology
 ii. stability analysis in accordance with the requirements in Clause 3.3.2(b) below
 iii. a quantified estimate of the stress relief effects associated with the cutting and an assessment and mitigation of impacts that these may have on the long-term stability of the cutting,
 iv. the development of a geotechnical monitoring program that considers groundwater and slope stability / movements during construction and maintenance. Wherever applicable, continuous remote monitoring should be implemented.

b) Stability analysis for a geotechnical design of a cut slopes shall comply with and address the following:
 i. Design philosophy:
 • In parts of cuttings characterised by soil and ‘soil-like’ extremely weathered rock, circular and non-circular failure mechanisms shall be considered in design. Whereas, in parts of cuttings characterised by moderately weathered (MW) or better rock, structurally-controlled failure mechanisms shall be investigated (including toppling, planar sliding or wedge failure modes).
 • Moderately conservative values of design parameters as per Clause 2.3b(iii) shall be adopted for the assessments.
 • The minimum FOS during construction (short-term) shall be 1.30.
 • At any parts of cuttings, the minimum FOS shall be 1.50 (long-term, in-service), with a representative ground water condition. As a minimum, a pore water pressure coefficient (Ru) of 0.15 shall be used even with appropriate drainage systems.
• The potential for instability due to undermining because of differential weathering and erosion shall be addressed.

• Potential susceptibility to rapid softening and deterioration of some lithologies shall be investigated.

• Any requirements for a staged excavation approach shall also be assessed.

• Cut slope designs based on prescriptive measures using observed performance of existing road cuttings in similar geological conditions with consideration of long-term stability and low maintenance costs may be acceptable. Such departures shall be submitted to Transport and Main Roads Geotechnical Section in writing through the Administrator for review and acceptance.

• The design considerations which shall be addressed include, but shall not be limited to, the influence of groundwater on stability, recognition of soft infill materials in discontinuities, and allowance for disturbance effects associated with excavation techniques, surface water run-off and erosion.

ii. Fissured soil:

• Mass operational strengths which capture the relatively lower strength of fissures / slickensides surfaces shall be adopted.

iii. Method of analysis:

• Two-dimensional limit equilibrium analysis using Morgenstern and Price method shall form the primary method of analysis for soil-like stability problems. For structurally-controlled rock stability problems and for characterising discontinuities in rock, kinematic stability analysis shall be carried out.

iv. Software:

• As per Clause 2.3(b) (vi) for soil and soil-like materials.

c) A geotechnical monitoring program of cut slopes that addresses groundwater and / or slope movements (refer Clause 3.3.2(a)(iv)) shall detail the following:

i. nature of the instrumentation

ii. locations (physical surveys with ‘x’, ‘y’, ‘z’ coordinates) within the ground where the instruments are to be installed (on cross-sections)

iii. monitoring frequency, contingency plans with other relevant details, and

iv. instrumentation at identified critical locations shall remain to enable the continuation of monitoring of critical elements beyond the Defect Liability Period.
d) Presentation of stability analysis:

The geotechnical design documentation shall include an RPEQ certified report on the stability analysis of the cut slopes. The stability analysis report shall include:

i. geotechnical models, including any geotechnical domains, rock mass classification, the design strength parameters, pore water pressure conditions adopted, design standards complied with and supplemented with design calculations where appropriate

ii. analyses of kinematic and / or circular and non-circular failure modes, and

iii. design of cut face and stabilisation treatments including associated drawings.

e) Rock fall analysis:

Rock fall modelling shall be carried out on all major rock cuttings with an overall height greater than 10 m in height, with appropriate design to ensure rock fall debris does not present a hazard to the road users.

3.3.3 Reinforced cut slopes

For reinforced cut slopes up to 70 degrees, the following requirements, in addition to those stipulated for unreinforced cuts in Clause 3.3.2, shall apply. Cut slopes steeper than 70 degrees are considered as walls and Clause 5.4 shall apply for soil / rock nail reinforced slopes.

Kinematics analysis and design for block / wedge failure shall be carried out by an appropriate design method.

The design of insitu slope stabilisation measures shall be carried out based on BS 8006 as the primary method and Technical Specification MRTS03 Drainage, Retaining Structures and Protective Treatments.

The use of BS 8006 will override FOS stipulated in Clause 3.3.2b).

a) The design shall take into account the following:

i. design life

ii. imposed and dead loads

iii. overall stability and internal failure mechanisms both during construction and in the long term

iv. impact of the proposed cuttings on existing and new structures

v. durability and allowance for construction damage of reinforcing elements

vi. influence of structural discontinuities in the rock, and

vii. behaviour of the ground under stressing loads.

b) Moderately conservative values of design parameters as per Clause 2.3b(iii) shall be adopted for the assessments.
c) Presentation of design calculations:

i. Design of insitu stabilisation treatments shall be documented with associated drawings. This documentation shall clearly indicate the geotechnical profile, design strength parameters, pore water pressure conditions adopted, design standards complied with and supplement with design calculations where appropriate.

ii. Construction sequence must be outlined and locations of reinforcing elements to be proof tested shall be identified along with their proof test loads.

3.3.4 Construction

a) A geotechnical monitoring program for groundwater and/or slope movements shall be documented in the Contractor's earthworks and construction plans and drawings.

b) The geotechnical monitoring program for groundwater and/or slope movements shall be implemented and maintained throughout the construction of cuttings until final completion of the Contract.

The following activities shall be undertaken by the Contractor/Designer as part of the geotechnical monitoring program during construction:

i. visual inspection of slope materials during excavation to verify the design assumptions as well as water/movement monitoring

ii. progressive review of conditions and data that become available during construction and, if necessary, modification of cut slope design, subsurface drainage requirements and construction sequencing

iii. regular monitoring of installed ground instruments including during critical phases of construction and after significant rainfall events

iv. regular auditing of instrument status and fixing/replacing damaged or malfunctioning instruments as soon as practicable

v. progressive review of excavation methodology during construction including temporary support systems

vi. identification and assessment of potential local instability and adoption of remedial measures as soon as practicable to mitigate the progression of such local failures.

In addition, appropriate action (as acceptable by the Administrator, in consultation with Transport and Main Roads Geotechnical Section) shall be taken if such local conditions are deemed to:

- compromise the cut slope stability during its design life, and/or
- present an unacceptable environmental impact (or the potential for an unacceptable environmental impact), and/or
- impact on the safety of the road user or construction and maintenance workers

vii. execution of required proof testing for slope reinforcement.

The maintenance requirements in Clause 2.9 shall also apply to cuts.
4 Bridge and other structure foundations

4.1 General

4.1.1 Structural aspects

Reference shall be made to the department’s Design Criteria for Bridges and Other Structures for durability, structural and other requirements not covered here.

4.1.2 Geotechnical aspects – geotechnical investigation and reporting

Geotechnical investigation for the design of foundation shall be carried out for all bridges and other structure foundations. Scope briefing for all geotechnical works must be acceptable to Transport and Main Roads Geotechnical Section before the commencement of any geotechnical site investigation as per Clause 1b).

The geotechnical investigation shall adequately inform the design while ensuring that the site geological model can reasonably be established. Unless otherwise approved or directed by Transport and Main Roads Geotechnical Section, a minimum of two boreholes shall be drilled at every abutment and pier location.

With a view of further reducing the chances of latent conditions during construction, the number of boreholes to be drilled at a particular site will depend on how well the site geology could reasonably be established. To achieve this aim, the subsurface geological model shall be updated as the drilling is continuing.

The geotechnical and structural engineers responsible for a project shall be satisfied that the information obtained from a particular site is adequate for the foundation design before the drilling contractor demobilises from the site. Generally, the boreholes shall be drilled at a maximum spacing of 10 m or part thereof along the width of every abutment and pier of all bridges.

To avoid doubt, twin bridges shall be treated as separate bridges. For other structures, the details of Geotechnical Investigations shall be discussed and approved by the Administrator in consultation with Transport and Main Roads Geotechnical Section.

For sites where Prestressed Concrete (PSC) driven piles are likely to be the foundation option, all boreholes shall be extended to at least 5 m into substrata with consecutive Standard Penetration Test (SPT) number greater than 50 (SPT N > 50).

For sites where Cast-in-Place (CIP) piles are likely to be the foundation option, all boreholes shall be extended to a minimum of 5 m into competent bedrock (moderately weathered or better rock).

Geotechnical investigations for Driven Steel Tubular (DST) piled foundations shall penetrate at least 5 m beyond the expected toe of the proposed DST piles.
The geotechnical design report(s) for foundation shall include the following as a minimum:

a) geological models:

 The models shall be detailed and shall be prepared for each foundation location in complex geological terrain. The model(s) shall capture minimum geological elements that may assist in design, such as stratigraphy of the subsurface within the depths investigated, and show the various lithologies and their weathering grades with demarcation of potential zones of water ingress, structural defects, including clay seams, fault and sheared zones to enable geotechnical models to be developed

b) design parameters with justification

c) design calculations for geotechnical axial and lateral capacities of pile(s) where relevant

d) design calculations for deflection and bending moments in the pile(s) under lateral loading where relevant

e) group effects when estimating settlements and the distribution of load within the piles in a group

f) design of approach embankments (see Clause 2.2h and Table 2.2)

g) spill-through and retaining walls for abutment supports, as applicable, and

h) construction considerations including, but not limited to, staging of earthworks and piling operations.

4.2 Deep foundations

4.2.1 Design philosophy

Piles shall be designed to support the design loads with adequate geotechnical and structural capacity and with tolerable settlements and lateral deflections in conformance to the performance requirement of the structure. Although not exhaustive, the compliance design shall:

a) ensure that there is an adequate margin of safety against the possibility of pile failure under working loads

b) limit settlement of the foundations and the differential settlement between the foundations (abutment / piers) to values that are consistent with performance requirements of the superstructure

c) consider the overriding influence of site geology, construction methodology and quality control adopted on rock mass properties and overall design shall be recognised in the design of CIP piles

d) eliminate any contribution from base when there is uncertainty to the end bearing in the design of CIP piles

e) limit the deflection of piles due to lateral loading to values that are consistent with performance requirements of the superstructure.
4.2.2 Design methodology

4.2.2.1 Axial capacity of piles

a) Driven prestressed concrete (PSC) and steel piles (for example, H piles):

Design of driven piles shall be carried out based on Australian Standard 5100.3 (AS 5100.3) and MRTS65 Precast Prestressed Concrete Piles or MRTS66 Driven Steel Piles, where relevant; however, the geotechnical reduction factor (\(\varphi_g\)) shall not be greater than 0.65.

The axial capacity of the piles shall only be based on static capacity calculations using moderately conservative design parameters as per Clause 2.3b(iii) and site-specific geotechnical profiles. The design skin friction and end bearing values shall be derived using the widely accepted methods (such as effective stress method, alpha-method, CPT based methods, SPT based method). Driving allowances, that is, underdrive and overdrive, shall only be based on the static capacity calculations based on upper and lower bound geotechnical models, respectively. Particularly, a clear justification for the ‘underdrive’ should be provided. Pile driveability assessments shall be based on geotechnical models exerting the worst possible driving resistance and driving stresses.

Piles at bridge abutment locations shall not be driven until the estimated post construction settlement of the approach embankment is reduced to less than 100 mm over 100 years by preloading or otherwise. Any expected residual settlement of the approach embankment after a pile is driven shall be taken into account in the design. Consideration shall be given to the settlement of individual piles and pile groups resulting from negative skin friction caused by settlement of the surrounding ground.

Driven piles shall be tested to ascertain their capacity and integrity. The testing shall be carried out with Pile Driving Analyzer (PDA) as per MRTS68 Dynamic Testing of Piles.

The minimum number of piles PDA tested shall be the greater of:

i. 15% of piles per pier / abutment bent

ii. minimum one pile per pier / abutment.

First pile to be installed in each abutment or pier shall be subjected to high strain dynamic (PDA) testing over the full length of the drive to determine driving stresses, impact energy and geotechnical capacity in addition to establish pile driving parameters for installation of the rest of piles in the foundation system.

The outputs from the PDA testing shall include an estimate of mobilised axial capacity, an indication of the load-settlement characteristics and an indication of the pile integrity.

Monitoring of pile driving shall be undertaken on all piles as per MRTS68 Dynamic Testing of Piles.

All testing shall conform to the requirement of MRTS68 Dynamic Testing of Piles.

The supplier and operator of the pile driving analyser shall be a company independent of the piling contractor.

b) CIP not socketed into rock:

The design shall be carried out based on AS 5100.3 and MRTS63 Cast-In-Place Piles, but the geotechnical reduction factor (\(\varphi_g\)) shall be not greater than 0.55.
c) Driven Steel Tubular (DST) piles (with reinforced concrete pile shaft):

The design shall be carried out based on AS 5100.3 and MRTS64 Driven Tubular Steel Piles (with reinforced concrete pile shaft), but the geotechnical reduction factor (φ_g) shall be not greater than 0.60. The geotechnical reduction factor (φ_g) up to 0.70 can be considered, in consultation with Transport and Main Roads Geotechnical Section, if all the piles (100%) are subject to PDA testing.

In addition, the following requirements are to be satisfied:

i. The design skin friction and end bearing values shall be derived using the widely accepted methods (such as effective stress method, alpha-method, CPT based methods, SPT based method).

ii. In deriving the above (i), the DST piles are to be considered as a non-displacement (and non-preformed) piles.

iii. Each inferred geotechnical unit shall have a constant (or varying with depth), moderately conservative design parameters as per Clause 2.3b(iii) for establishing skin friction and end bearing values.

iv. Axial capacity of the piles shall be based only on static capacity calculations.

v. Design shall be based on plugged or unplugged condition, whichever is lower.

vi. The internal unit shaft friction of the soil column below the bottom of (concrete) plug level shall be limited to 50% of the external unit shaft friction for piles without a driving shoe. This shall be not more than 25% for DST piles with a driving shoe.

vii. End bearing is only allowed on the steel annulus for unplugged conditions.

viii. Driving allowances, that is, underdrive and overdrive, shall only be based on the static capacity predictions based on upper and lower bound ground conditions respectively.

ix. Particularly, a clear justification for the ‘underdrive’ should be provided.

x. Piles shall not be designed for setup.

xi. The hammer and the driving gear selection shall be able to drive to the design depths even through any premature ‘plugged’ conditions.

xii. Pile driveability assessments shall be based on the geotechnical models imposing worst possible driving resistance and driving stresses in the pile.

xiii. The driving shoe may be omitted if the piles can be driven to the design depths without any delay and damage.

xiv. Piles shall not be terminated above the designed ‘underdrive’ level without prior approval from the Administrator. The Approval requires a detailed written demonstration that the piles can be terminated above the ‘underdrive’ level subject to the review and acceptance of Transport and Main Roads Geotechnical Section.

xv. Plugged condition is not acceptable as a reason for terminating piles above the ‘underdrive’ depths.
xvi. Detailed methodology related to PDA testing and signal matching procedure as per MRTS68 shall be provided by Designer / Contractor before any driving is planned and accepted by the Administrator prior to establishment of piling equipment for the works.

xvii. DST piles shall be tested in accordance with the requirement of MRTS64 Driven Tubular Steel Piles (with reinforced concrete pile shaft).

d) CIP socketed into rock:

The design method proposed by Pells (1999) that considers the sidewall slip based on the work done by Rowe and Armitage (1987) shall be the primary design tool for the design of rock sockets, with the following two exceptions:

1. geotechnical reduction factor shall not be greater than .55, and
2. ultimate end bearing of the piles may be calculated using the methods given in Turner, J.P. (2006) for massive rocks, jointed rock mass, layered rocks, and fractured rocks. The ultimate end bearing shall not exceed $4.8\sqrt{q_u}$ (MPa), where q_u (MPa) is the representative uniaxial compressive strength of the intact rock at the pile base or the compressive strength of the concrete, whichever is lower.

Rowe and Armitage (1987) design method, that is presented in Pells (1999) publication, is derived for a single rock layer; therefore, when using this method for multiple rock layers with significant variation in the rock strength and stiffness, care should be taken in selecting the socket length for the serviceability design.

For rocks that are stronger than concrete, the concrete strength will govern the available end resistance and side friction.

The final design shall be checked with at least a second design method which explicitly addresses the socket / pile interface to obtain the full load-deformation response to assist in confirming the ultimate and serviceability criteria.

For piles socketed into rock, an iterative design methodology developed on the basis of socket inspections to validate the geotechnical model and the design assumptions needs to be ensured. In particular, the load transfer mechanism between the shaft and the base adopted in design needs to be justified on the basis of the socket inspections. Site inspection and verification of constructed sockets shall be carried out in accordance with MRTS63 Cast-In-Place Piles. Other requirements which are mandatory for a successful design and construction of sockets are contained in MRTS63 Cast-In-Place Piles and MRTS63A Piles for Ancillary Structures.

4.2.2.2 Lateral capacity and lateral deflection of piles

a) Lateral capacity:

Piles shall be designed to have adequate lateral load carrying capacity. The requirement of Clause 4.4.7 of AS 2159 (including but not limited to) shall also to be satisfied.

b) Lateral deflection:

The lateral displacement of a pile shall not exceed the tolerable lateral displacement consistent with the performance requirements of the structure. The elastic continuum approach of Poulos (1971a/1971b) or alternative approaches based on subgrade reaction theory (Winkler Foundation), the p – y alternative or the characteristic load method (CLM) could be used.
4.2.3 Construction

The overriding influences of geology and construction techniques on the performance of CIP needs to be considered. Reference should be made to MRTS63 Cast-In-Place Piles for construction-related issues that may influence the design and construction of CIP. An objective of all piling construction is to make piles free of defects; therefore, low strain or non-destructive integrity tests shall be carried out to ensure integrity of the constructed CIP. The supplier and operator of the pile dynamic / integrity tests shall be a company independent of the piling contractor.

4.3 Spread footings and strip footings

The design of these footings (for all structures including bridges and culverts but excluding Reinforced Soil Structure Wall foundations) must satisfy the following:

a) Spread footings and strip footings shall be designed in accordance with the requirement of AS 5100.3.

b) Settlement and differential settlement shall be limited to values that are consistent with the performance requirements of the superstructure.

c) Where the footings are founded on natural or cut slopes, the design must ensure both the short-term and long-term stability of the slopes with minimum FOS of 1.50. Due consideration shall be given to factors such as reduced bearing capacity due to loss of ground resulting from slope, groundwater, geological weathering, fissuring, softening, structural defects and climate.

d) The effect of volumetrically active soils that manifest in the form of shrink-swell shall be considered for all structures, especially for bridges and culverts and light loaded structures such as pavements. Guidance shall be sought from relevant Australian Standards and departmental Technical Notes, such as AS 2870 and Western Queensland Best Practice Guidelines 35 and 37 (WQ35 and WQ37).

e) Foundation Inspection and certification, prior to structural constructions, shall be carried out by a Geotechnical Assessor (GA) having qualifications in accordance with Clause 11.2 of MRTS63 Cast-In-Place Piles.

5 Retaining structures

5.1 General

All retaining structures shall be designed to ensure an asset that is fit for purpose and guarantees long-term performance. In addition to the requirements stipulated in this section, reference shall be made to the department’s Design Criteria for Bridges and Other Structures for durability, structural and other requirements not covered here.

Except for embedded retaining wall, soil nailed wall, and reinforced soil wall, all other walls covered in this document shall satisfy the requirement of AS 4678 for loads and their combinations.

The minimum, long-term design vertical live load shall be 5 kPa unless noted otherwise. Vertical and lateral loads from earthworks (or other effects including structure and infrastructure) on, or adjacent to, the walls shall be included in the design.

Traffic impact and safety barrier loads and other superimposed structural loads (for example, noise barriers) shall be considered in the design of all walls.

Compaction-induced stresses shall also be taken into consideration.
Supplementary Specifications shall be included with the design for any specific requirements for ground and/or foundation improvement or construction methodology that is not included in current Technical Specification (MRTS) documents.

5.2 Embedded retaining walls

a) Design of embedded retaining walls, for example, sheet pile wall, contiguous pile wall, secant pile wall, and so on shall comply with CIRIA C760 or relevant Australian Standard.

b) The design report shall include the following as a minimum:

- i. geological model
- ii. geotechnical model
- iii. design parameters
- iv. groundwater conditions
- v. cross-section and long-section details of the wall
- vi. bending moment and shear force diagrams for different load cases and anchor/prop loads if any
- vii. anchor/prop details if any
- viii. proof testing program for anchors
- ix. construction sequence, and
- x. short-term and long-term monitoring programs.

c) Certification of design and construction shall be as per Clause 5.8.

5.3 Reinforced concrete cantilever retaining walls

a) The design of reinforced concrete retaining walls (RC Walls) shall satisfy the requirement of AS 4678.

b) The design report must include the following as a minimum:

- i. geological model
- ii. geotechnical model
- iii. design parameters
- iv. groundwater conditions
- v. cross-section and long-section details of the wall.

c) Certification of design and construction shall be as per Clause 5.8.
5.4 **Soil nailed walls**

a) The design of insitu cut stabilisation measures shall be carried out based on BS 8006 or relevant Australian Standard and the department's Technical Specification MRTS03 *Drainage, Retaining Structures and Protective Treatments*. The design shall take into account the following:

i. overall stability and internal failure mechanisms, both during construction and in the long term

ii. impact of the proposed cuttings on existing and new structures

iii. durability and allowance for construction damage of reinforcing elements

iv. behaviour of the ground under stressing loads, and

v. minimum pore water pressure coefficient (Ru) shall be 0.15 even with appropriate drainage systems such as horizontal drains.

b) The design report shall include the following as a minimum:

i. the design of insitu stabilisation treatments shall be documented with associated drawings – these shall include geological long-sections, site-specific cross-sections pertaining to critical chainages with details on reinforcement layouts and drainage details

ii. a clear documentation indicating the geotechnical models and design strength parameters and pore water pressure conditions adopted, with justification, design standards complied with and supported with design calculations where appropriate

iii. construction staging and sequence

iv. proof test loads, and

v. short-term and long-term monitoring programs.

c) Certification of design and construction shall be as per Clause 5.8.

Note: Where ground anchors are used, they shall be designed to the requirement of BS 8081 and / or relevant Australian Standard and departmental specifications such as MRTS03 *Drainage, Retaining Structures and Protective Treatments*.

5.5 **Reinforced Soil Structure (RSS) walls**

a) The design of Reinforced Soil Structure (RSS) walls shall conform to MRTS06 *Reinforced Soil Structures*. The design report shall include the following as a minimum:

i. geotechnical model

ii. design parameters and justification

iii. groundwater condition

iv. actual cross-section and long-section details of the wall (not typical sections)

v. design calculations for internal and external stabilities of the wall

vi. design calculations for global stability of the wall, certified by a RPEQ Geotechnical Engineer
vii. Supplementary Specifications for any specific ground and/or foundation improvement or construction methodology, and

viii. assumptions made on design parameters used as select backfill and general backfill. Testing requirements shall be as per MRTS06 Reinforced Soil Structures.

b) Certification of design and construction shall be as per Clause 5.8.

5.6 Gabion retaining walls

Gabion retaining walls shall be designed to the requirement of AS 4678. The maximum height of a gabion wall shall be limited to 6 m.

Gabion walls are not allowed under bridge abutments, except for the purposes of facing or for scour and erosion control purposes.

Precautionary measures against fire hazard must be considered in the design of gabions located in high fire hazard areas.

In addition to the requirements stipulated in Clause 42 of MRTS03 Drainage, Retaining Structures and Protective Treatments, the following design/construction requirements stipulated for Boulder Retaining Wall Section of MRTS03 Drainage, Retaining Structures and Protective Treatments and Clause 5.7 of this document shall be met for gabion walls:

a) foundation treatments, including concrete slurry fill and Supplementary Specifications for any specific ground and/or foundation improvement or construction methodology

b) foundation construction requirements

c) stability

d) design report and drawings

e) tolerances and level control

f) surface runoff behind the wall

g) certification of design and construction shall be as per Clause 5.8, and

h) drainage as per AS 4678.

5.7 Boulder retaining walls

5.7.1 Introduction

In the absence of specific design codes covering boulder retaining walls and the difficulties of carrying out compliance testing, the maximum effective design wall height (Figure 5.7.2) of a boulder wall is limited to 3 m.
5.7.2 Definition of terms

The terms used in this specification shall be as defined in Figure 5.7.2.

Figure 5.7.2 – Typical boulder wall section

![Figure 5.7.2 – Typical boulder wall section](image)

5.7.3 Materials

Refer Clause 53 of MRTS03 *Drainage, Retaining Structures and Protective Treatments.*

5.7.4 Design

a) Design:

Design shall be to AS 4678 or traditional (lumped) factor of safety (FOS) approach. For traditional FOS, the minimum FOS given in Table 5.7.4-A shall be satisfied.

Table 5.7.4-A – Minimum FOS

<table>
<thead>
<tr>
<th>Mode of failure</th>
<th>Minimum FOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sliding</td>
<td>2.0</td>
</tr>
<tr>
<td>Overturning</td>
<td>2.0</td>
</tr>
<tr>
<td>Bearing</td>
<td>2.5</td>
</tr>
<tr>
<td>Global</td>
<td>1.5</td>
</tr>
</tbody>
</table>

b) Minimum wall dimensions:

i. Minimum wall dimensions shall be in accordance with Table 5.7.4-B below.

Table 5.7.4-B – Geometric details of wall

<table>
<thead>
<tr>
<th>Effective design wall height, H (m)</th>
<th>Minimum wall base dimensions, B (m)</th>
<th>Minimum width of top of wall, D (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>1.4</td>
<td>0.5</td>
</tr>
<tr>
<td>2.0</td>
<td>1.5</td>
<td>0.5</td>
</tr>
<tr>
<td>2.5</td>
<td>B/H = 0.7</td>
<td>0.75</td>
</tr>
<tr>
<td>3.0</td>
<td>B/H = 0.7</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Notes:

a) For the definition of effective design wall height, ‘H’, refer the typical wall section (Figure 5.7.2).

b) A minimum foundation embedment of 0.5 m of the boulder wall into natural ground shall be provided.

c) Front slope of wall shall not be steeper than 4 Vertical to 1 Horizontal.
c) Stability:
 i. The stability of the wall shall be checked against the following criteria, in addition to other requirements that may be warranted. Wall friction must be ignored in the analyses.
 - sliding: effective cohesion to be assumed zero, both total and effective stress calculations for sliding to be carried out, passive resistance in front of the wall shall be ignored
 - overturning: shall meet the requirements of the middle-third rule of structural mechanics
 - bearing failure: total stress calculations shall be carried out, and
 - global failure: both total and effective stress calculations shall be carried out.
 ii. The design friction angle of rockfill / backfill shall be limited to a maximum of 36º.

d) Design report and drawings:
 i. Design report(s) certified by RPEQ Geotechnical Engineer and all relevant drawings shall be included in the design documentation.
 ii. Design report(s) shall include the following as a minimum:
 - source of rockfill (if known) and methodology for production control
 - properties of the rockfill
 - properties of the backfill material
 - foundation conditions
 - wall dimensions, and
 - design calculations.
 iii. The drawings shall include the following details as a minimum:
 - plan showing the location of the wall along with adjoining structures
 - wall elevation (vertical joints must be staggered)
 - wall cross-sections showing the width of the courses at every change of wall height greater than 0.5 m
 - drainage details: provision of a full height 300 mm minimum thickness granular drainage blanket (see Clause 53.2.2 of MRTS03 Drainage, Retaining Structures and Protective Treatments) behind the boulder wall – continuous geosynthetic filter fabric complying with MRTS27 Geotextiles (Separation and Filtration) shall be provided at the drainage blanket / backfill interface, and
 - the allowable bearing pressures to be stipulated.

5.7.5 Construction

Construction requirements shall conform to Clause 53 of MRTS03 Drainage, Retaining Structures and Protective Treatments. Certification of design and construction shall be as per Clause 5.8.
5.8 Certification of retaining structures

a) The design documentation shall include a certificate from the RPEQ Designer which confirms that the design:

i. adequately allows for the site conditions, applied loadings, and relevant material properties for all components of the design, and

ii. ensures the structural integrity and serviceability of the wall for the nominated design life.

b) The Design Documentation shall include the following, in addition to the Design Certificate:

i. design calculations

ii. construction drawings

iii. construction specifications, including wall construction sequence

iv. Supplementary Specifications for any specific requirements for ground and / or foundation improvement or construction methodology, and

v. arrangements for monitoring the performance of the wall over the nominated period.

c) The design documentation shall be submitted to the Administrator who shall forward to Transport and Main Roads Geotechnical and Structural Sections for review. Until the design is acceptable to the department, construction of the wall shall not be commenced.

d) At the end of construction as part of the constructed drawings, the Contractor shall submit to the Administrator, a report certified by the Contractor’s RPEQ Geotechnical Engineer (or other suitably qualified RPEQ Geotechnical Engineer) who supervised the construction of the wall. The report shall demonstrate that the wall has been duly constructed as per the relevant departmental Technical Specifications, Australian Standards or codes, other relevant international standards mentioned in this section and this document while conforming to all the design requirements.

6 Remediation of existing slopes and embankments

Embankments and cut slopes in new infrastructure projects shall be designed for 100 years' design life. Their design and performance requirements shall be as per Clauses 2 and 3 of this document; however, for the remediation works on existing slopes and fill embankments (excluding remedial works of any new infrastructures less than 10 years old since the completion of the construction), a reduced design life and a lower FOS may be considered in consultation with and at the sole discretion of Transport and Main Roads Geotechnical Section as outlined in the following subsections.
6.1 Design life for remediation works

The required design life for remediation of existing slopes or embankments is generally dependant on the remnant design life and the future upgrades of the associated road network, available funding, and / or the District’s requirements. If the design life shorter than 100 years is justifiable, lower durability requirements of the structural and the earth reinforcement elements in remediation works can be considered; for example, the level of corrosion protection requirements for soil nails and rock dowels specified in MRTS03 Drainage, Retaining Structures and Protective Treatments may be relaxed if a reduced design life is justifiable. Any such reduction in design life and the level of corrosion protection shall be agreed for each design, with the relevant Transport and Main Roads District in consultation with Transport and Main Roads Geotechnical Section, prior to adopting it in the design.

6.2 FOS to be used in the remediation design

Depending on the level of risk and associated consequences posed to road users, properties, public utilities, buildings, and so on, a lower FOS may be adopted in the geotechnical design for remedial works of failed slopes.

Table 6.2 provides guidance on the minimum two-dimensional FOS required in the design of remedial works weighted against consequential effects. This table and the procedure outlined herein are generally in accordance with RMS’s Technical Direction (2018) for Geotechnical Design for Remediation on Existing Slopes and Embankments.

The FOS to be adopted by the design consultants or contractors shall be agreed and accepted by Transport and Main Roads Geotechnical Section prior to the commencement of designs.

<table>
<thead>
<tr>
<th>Consequence Class</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long-term FOS</td>
<td>1.50</td>
<td>1.40</td>
<td>1.30</td>
<td>1.25</td>
<td>1.25</td>
</tr>
<tr>
<td>Short-term FOS</td>
<td>1.25</td>
<td>1.25</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
</tr>
</tbody>
</table>

Notes: Definition of consequence class can be found in RMS’s Guide to Slope Risk Analysis (2014).

Pore water coefficient (Ru) to be adopted in the assessments shall not be less than 0.15 for cut slopes even with appropriate drainage systems in place, in the absence of any verified groundwater observations and assessments.

Geotechnical designs of retaining structures, that may be required for the stabilising of failed slopes or embankments, shall be carried out in accordance with the relevant clauses in this document except that the design life shall be determined in accordance with Clause 6.1.

7 High risk temporary work design

Temporary works are considered high risk when they have the potential to cause adverse impacts on existing roads, associated utilities and / or safety of the road users; for example, temporary retaining structures or excavations adjacent to live traffic. Any temporary works required for the safe operation of cranes, piling rigs or drilling rigs shall also be considered as high risk.
All such high risk temporary works shall be designed by a GE3 prequalified consultant and be certified by an RPEQ Geotechnical Engineer.

High risk temporary works shall be instrumented and monitored unless agreed otherwise in writing with the Administrator.

Serviceability requirements of adjacent roads, for example, rideability requirements in accordance with Table 2.2, services and PUP shall also be assessed and measures shall be proposed to mitigate any adverse impacts.
8 References

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS 4678</td>
<td>Earth-retaining structures, Australian Standard.</td>
</tr>
<tr>
<td>AS 5100.3</td>
<td>Bridge design – Foundation and soil supporting structures, Australian Standard.</td>
</tr>
<tr>
<td>BS 8081</td>
<td>Code of practice for Ground Anchorages, British Standards Institution.</td>
</tr>
<tr>
<td>MRTS03</td>
<td>Drainage, Retaining Structures and Protective Treatments</td>
</tr>
<tr>
<td>MRTS04</td>
<td>General Earthworks</td>
</tr>
<tr>
<td>MRTS06</td>
<td>Reinforced Soil Structures</td>
</tr>
<tr>
<td>MRTS27</td>
<td>Geotextiles (Separation and Filtration)</td>
</tr>
<tr>
<td>MRTS40</td>
<td>Concrete Pavement Base</td>
</tr>
<tr>
<td>MRTS63</td>
<td>Cast-In-Place Piles</td>
</tr>
<tr>
<td>MRTS63A</td>
<td>Piles for Ancillary Structures</td>
</tr>
<tr>
<td>MRTS64</td>
<td>Driven Tubular Steel Piles (with reinforced concrete pile shaft)</td>
</tr>
<tr>
<td>MRTS65</td>
<td>Precast Prestressed Concrete Piles</td>
</tr>
<tr>
<td>MRTS66</td>
<td>Driven Steel Piles</td>
</tr>
<tr>
<td>MRTS68</td>
<td>Dynamic Testing of Piles</td>
</tr>
</tbody>
</table>