Guideline

Structural design procedure of pavements on lime stabilised subgrades

April 2019
Copyright
© The State of Queensland (Department of Transport and Main Roads) 2019.

Licence
This work is licensed by the State of Queensland (Department of Transport and Main Roads) under a Creative Commons Attribution (CC BY) 4.0 International licence.

CC BY licence summary statement
In essence, you are free to copy, communicate and adapt this work, as long as you attribute the work to the State of Queensland (Department of Transport and Main Roads). To view a copy of this licence, visit: https://creativecommons.org/licenses/by/4.0/

Translating and interpreting assistance
The Queensland Government is committed to providing accessible services to Queenslanders from all cultural and linguistic backgrounds. If you have difficulty understanding this publication and need a translator, please call the Translating and Interpreting Service (TIS National) on 13 14 50 and ask them to telephone the Queensland Department of Transport and Main Roads on 13 74 68.

Disclaimer
While every care has been taken in preparing this publication, the State of Queensland accepts no responsibility for decisions or actions taken as a result of any data, information, statement or advice, expressed or implied, contained within. To the best of our knowledge, the content was correct at the time of publishing.

Feedback
Please send your feedback regarding this document to: tmr.techdocs@tmr.qld.gov.au
Contents

1 Background ... 1
2 Purpose ... 1
3 Related documents .. 1
4 Information .. 2
5 Field results and analysis ... 2
 5.1 Cunningham Highway (17B) .. 2
 5.2 Warrego Highway (18B) Toowoomba–Dalby ... 3
 5.3 Leichhardt Highway (26C) Murri–Murri ... 3
6 Design parameters .. 4
7 Structural design guidelines for pavements incorporating lime stabilised subgrade layer ... 4
 7.1 Requirements for use of lime stabilised subgrade: ... 4
 7.2 Lime stabilised subgrade .. 5
 7.3 Characterisation for design .. 5
 7.4 Design ... 6
1 Background

Subgrade stabilisation can be defined as a means of enhancing soil strength and stiffness properties by adding a hydraulic binder (substances which harden to a water-resistant building material following the addition of water) such as lime. Correctly applied, stabilisation can also decrease the subgrade’s water sensitivity and volume changes during wet / dry cycles.

The design procedures in this guideline are intended for soil that is to be stabilised with lime. These procedures do not apply where drying or soil modification is the overall goal; however, modification should be applied with caution, as it can increase soil permeability, and seriously compromise pavement life.

Lime is the most popular subgrade stabilisation additive because of its slow strength gain characteristics. Transport and Main Roads’ established testing protocol and mix design procedure is available and should be applied to determine the optimum amount of lime to stabilise the subgrade. Ideally, the depth of subgrade to be stabilised should be 300 mm, with a minimum of 250 mm.

2 Purpose

The aim of this guideline is to specify a rational structural design procedure to be applied when designing a lime stabilised subgrade as a permanent structural pavement layer.

3 Related documents

This guideline should be read in conjunction with the following related documents:

- Transport and Main Roads Technical Specification MRTS07A *Insitu stabilised subgrades using quicklime or hydrated lime*
- Transport and Main Roads Technical Specification Annexure MRTS07A.1 *Insitu stabilised subgrades using quicklime or hydrated lime*
- Transport and Main Roads Specification Measurement MRS07A *Insitu stabilised subgrades using quicklime or hydrated lime*
4 Information

Lime has a number of effects when added to soil. These effects can be categorised as soil drying, soil modification and soil stabilisation:

- **Soil drying** is a rapid decrease in soil moisture content due to the chemical reaction between water and lime following the addition of lime into a moist soil.

- **Modification** effects include reduction in soil plasticity, improved compactability, reduction of the soil’s capacity to swell and shrink and improved strength and stability after compaction. These effects generally happen within a short time period, typically 1–48 hours after the introduction of lime. The effects are more pronounced in soils with sizable clay content. The effects may not be permanent, and significantly increased permeability of the subgrade can jeopardise pavement life.

- **Lime stabilisation** can take place in soils containing a suitable amount of clay with the appropriate mineralogy to produce long-term permanent strength gains. Effective lime stabilisation requires additional lime, and a longer time period of ‘curing’.

 A soil that is lime stabilised benefits initially from soil drying and modification, but the additional lime delivers a proven permanent reduction in shrinkage, swelling and soil plasticity which can resist the effects of prolonged soaking.

5 Field results and analysis

Transport and Main Roads has tested several Queensland projects with lime stabilised subgrades. This involved conducting Unconfined Compressive Strength (UCS) and Capillary Rise tests on cores extracted from the stabilised subgrades.

These projects included:

- Cunningham Highway (17B), Freestone Creek–‘8-mile’ intersection, constructed 1997.
- Warrego Highway (18B) Toowoomba–Dalby, constructed 2009

5.1 Cunningham Highway (17B)

The Cunningham Highway site has the following characteristics:

- subgrade stabilised for widening existing road
- 300 mm of granular pavement in the widening
- constructed 1997
- wearing surface was 100 mm asphalt
- after eight years (2005), a further 100 mm asphalt
- pavement performing very well.

Six cores from the subgrade were extracted in 2012 (after 15 years). Three of these were successfully tested to determine UCS as shown in Figure 5.1:
Figure 5.1 – Freestone Ck lime stabilisation (after 13 years) – UCS (Mpa)

Note: All results are above 2.50 MPa.

5.2 Warrego Highway (18B) Toowoomba–Dalby

The results of cores taken from one trench on the Warrego Highway (18B) Toowoomba–Dalby, 13 months after construction are shown in Figure 5.2:

Figure 5.2 – Warrego H’way 18B (2009) lime stabilised subgrade – 13 months after construction

Note: All but one of the above results are above 1.50 MPa.

5.3 Leichhardt Highway (26C) Murri-Murri

Results were taken from cores taken in situ and also from stored cores left over from the mix design stage of the construction project. The stored cores either had 5 or 6% lime added. See Figure 5.3.
Figure 5.3 – 26C – Murri-Murri – lime treated subgrade

For the 20 cores tested, all results were above 2.0 MPa except for one. It was noted that the exception had the largest length to diameter ration of all cores. Full details of the investigation and test results are reported in Pavements and Materials Branch Reports PM1160 Lime Stabilisation Research and PM 1172 Murri-Murri Investigation, which are accessible at the department’s Library Services.

6 Design parameters

Lime stabilisation can be considered when there is sufficient clay for the lime to react. This normally requires a Plastic Index (PI) equal or above 10%. Stabilisation of clayey material with lime generally results in pavements that have a much lower cracking potential than if the subgrade has been cement stabilised. Lime stabilised subgrades are also more durable as the effect of the clay has been reduced, rather than masked, as is the case with cement stabilisation.

The dosage rates of lime for construction will be the greatest of the lime demand test results and the lime required to achieve the target UCS of 1.5 MPa at 28 days. The range of UCSs should be between 1.0–2.0 MPa with a target UCS of 1.50 MPa (28 days) to make the lime stabilisation successful.

Based on the new information, the current Austroads design methodology considerably undervalues the structural strength of lime stabilised subgrades. The Transport and Main Roads design procedure to exploit more of the subgrade strength as a structural layer is fully explained in the following section. Note that this is still a conservative approach.

7 Structural design guidelines for pavements incorporating lime stabilised subgrade layer

7.1 Requirements for use of lime stabilised subgrade:

When lime stabilised subgrade is used:

- there shall be only one layer of lime stabilised subgrade; multiple layers of lime stabilised subgrade shall not be constructed. Multiple thin layers are significantly more prone to fatigue as compared to a single monolithic layer
- the thickness of the lime stabilised subgrade layer shall desirably be 300 mm with a minimum of 250 mm.
7.2 Lime stabilised subgrade

Appropriate uses for stabilisation of clay subgrades using lime include the following:

- where the materials to be stabilised are suitable (for example, have enough suitable pozzolans, the amount of organic carbon is not excessive) and the dosage rate required is acceptable
- for treatment of subgrades under existing pavements, only where removal and replacement of the existing pavement can be tolerated (for example, in terms of traffic management, cost).

Lime stabilisation can be adversely affected by any one of the following:

- a lack of suitable pozzolans
- the presence of excessive organic carbon
- the presence of soluble sulphates
- the presence of highly weathered soils with high ferric-oxide levels (for example, some lateritic soils).

The latter can actually interfere with the pozzolanic reaction.

Stabilisation of unsuitable soils can lead to serious problems which, at times, can only be rectified by removing and replacing the treated materials. If such problems occur, the overlying pavement layers must be removed. This can be a very expensive consequence of simply not undertaking adequate and appropriate testing.

It is crucial that adequate testing is conducted before the decision is made to stabilise a subgrade with lime. Advice should be sought from the Senior Engineer (Pavement Rehabilitation) to ascertain appropriate testing protocols. Transport and Main Roads' protocol should be applied.

Reference should also be made to Transport and Main Roads’ Pavement Rehabilitation Manual and Technical Standard MRTS07A In situ stabilised subgrades using quicklime or hydrated lime.

7.3 Characterisation for design

Stabilised subgrade materials are considered to behave as unbound soil materials with improved stiffness.

For the purposes of mechanistic design, they shall be modelled with the following properties:

- be cross-anisotropic (with a degree of anisotropy of 2)
- have a Poisson’s Ratio of 0.45
- be sublayered
- have a maximum potential modulus of the top sub-layer of the lime stabilised subgrade layer of 200 MPa.
7.4 Design

The steps for pavement design are best illustrated through an example as shown in the steps following:

Step 1 Develop a trial design by selecting a thickness for the stabilised layer of 300 mm, as shown in Table 7.4(A).

Table 7.4(A) – Trial pavement for the example

<table>
<thead>
<tr>
<th>Material type</th>
<th>Thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprayed seal surfacing¹</td>
<td>–</td>
</tr>
<tr>
<td>Unbound granular material Type 2.1</td>
<td>200 mm for start (for this example)</td>
</tr>
<tr>
<td>E\text{max} = 350 MPa</td>
<td>200 mm for start (for this example)</td>
</tr>
<tr>
<td>Min. thickness of the lime stabilised subgrade layer</td>
<td>For this example, 300 mm</td>
</tr>
<tr>
<td>Design subgrade CBR = 3% (for this example)</td>
<td>Semi-infinite</td>
</tr>
</tbody>
</table>

Note¹ Surfacing is sprayed seal

Characterisation of the trial pavement shall be obtained using steps 2–5. The allowable loading can be calculated using CIRCLY as shown in Step 5.

Step 2 Characterisation of the subgrade below the layer of subgrade stabilised with lime

For this example:

Unstabilised Subgrade CBR 3%, Vertical modulus E_v = 30 MPa and E_H = 15 MPa Poission’s Ratio = 0.45, Shear Modulus = 20.7 MPa.

Step 3 Characterisation of the subgrade layer stabilised with lime

The maximum potential modulus of the top sub--layer of the subgrade layer stabilised with lime is assumed to be 200 MPa (presumptive); hence

E_v = 200 MPa and E_H = 100 MPa, Poission’s Ratio = 0.45, Shear Modulus = 137.9 MPa.

Step 4 Other remaining lime stabilised subgrade sub-layers

Divide the total depth of the lime stabilised subgrade layer thickness into five equi-thick sub-layers, each of this in this case is 300 / 5 = 60 mm.

Calculate the ratio of moduli of adjacent layers:

R = (E_{top} of stabilised subgrade layer / E_{top} of unstabilised subgrade layer) 1/5 = (200 / 30) 1/5 = 1.46

Table 7.4(B) summarises the values:
Table 7.4(B) – Modulus of stabilised subgrade sub-layers

<table>
<thead>
<tr>
<th>Material type</th>
<th>Thickness (mm)</th>
<th>Vertical elastic modulus (MPa)</th>
<th>Poisson’s Ratio</th>
<th>Shear modulus (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lime stabilised subgrade</td>
<td>60</td>
<td>200</td>
<td>0.45</td>
<td>137.9</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>137</td>
<td>0.45</td>
<td>94.5</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>94</td>
<td>0.45</td>
<td>64.8</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>64</td>
<td>0.45</td>
<td>44.1</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>44</td>
<td>0.45</td>
<td>30.3</td>
</tr>
<tr>
<td>Subgrade</td>
<td>Semi-infinite</td>
<td>30</td>
<td>0.45</td>
<td>20.7</td>
</tr>
</tbody>
</table>

Note: No automatic sub-layering should be used in CIRCLY for this stabilised layer

Step 5 Moduli of the unbound granular base sublayers above the lime stabilised subgrade layer

The minimum granular material required above the lime stabilised subgrade layer shall be modelled and sub-layered as per Austroads’ Guide to Pavement Technology Part 2.

Divide the total depth of the unbound granular layer thickness into five equi-thick sub-layers, each of them in this case is 200 mm / 5 = 40 mm.

Calculate the ratio of moduli of adjacent layers:

\[R = \left(\frac{E_{\text{top of granular layer}}}{E_{\text{lime stabilised subgrade}}} \right)^{1/5} = \left(\frac{350}{200} \right)^{1/5} = 1.12 \]

Table 7.4(C) summarises the values:

Table 7.4(C) – Modulus of granular sub layers

<table>
<thead>
<tr>
<th>Material type</th>
<th>Thickness (mm)</th>
<th>Vertical elastic modulus (MPa)</th>
<th>Poisson’s Ratio</th>
<th>Shear modulus (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unbound granular base</td>
<td>40</td>
<td>350</td>
<td>0.35</td>
<td>259.3</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>315</td>
<td>0.35</td>
<td>233.3</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>281</td>
<td>0.35</td>
<td>208.1</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>251</td>
<td>0.35</td>
<td>185.9</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>224</td>
<td>0.35</td>
<td>165.9</td>
</tr>
<tr>
<td>Lime stabilised subgrade</td>
<td>300 (been sub-layered)</td>
<td>200</td>
<td>0.35</td>
<td>137.9</td>
</tr>
</tbody>
</table>

Step 6 Calculate the allowable loading

Using CIRCLY based on these thickness and moduli (for this example assuming SARs / ESA = 1.6 and desired project reliability of 97.5%) calculate the allowable loading.

In this case the allowable loading from CIRCLY is = 6.45 E 5 ESAs.

Step 7 Iterate to arrive at a final design as required

If required iterate through steps 1–5 to determine a final design (for example, by varying the thickness of the granular layer).
Independent of this analysis the minimum thickness of the granular layer above the lime stabilised subgrade should be as shown as follows in Table 7.4(D).

Table 7.4(D) – Minimum thickness of unbound granular pavement above lime stabilised subgrade

<table>
<thead>
<tr>
<th>Average daily ESA in design year of opening</th>
<th>Minimum unbound granular thickness above lime stabilised subgrade (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td><100</td>
<td>150</td>
</tr>
<tr>
<td>100–1000</td>
<td>200</td>
</tr>
<tr>
<td>>1000</td>
<td>250</td>
</tr>
</tbody>
</table>