Technical Specification

Transport and Main Roads Specifications
MRTS07B Insitu Stabilised Pavements using Cement or Cementitious Blends

July 2019
Contents

1 Introduction ..1
2 Definition of terms ..1
3 Referenced documents ..2
4 Standard test methods ..2
5 Quality system requirements ..3
 5.1 Hold Points, Witness Points and Milestones ...3
 5.2 Construction procedures ...4
 5.2.1 General ...4
 5.2.2 Insitu stabilisation ...4
 5.3 Conformance requirements ..5
 5.4 Testing frequencies and lot sizes ..6
6 Material ..6
 6.1 New material to replace material not suitable for stabilisation ...6
 6.2 Additional material for shape correction ..6
 6.3 Stabilising agents ...6
 6.4 Water ...7
7 Material compliance testing ..7
 7.1 General ...7
 7.2 Stabilising agents and water ..8
 7.3 Unbound pavement material ..8
8 Construction ...8
 8.1 General ...8
 8.2 Program of works ...8
 8.3 Site services, utilities, buildings and drainage ...9
 8.4 Allowable working time ..9
 8.5 Construction process ...9
 8.5.1 General ...9
 8.5.2 Construction based on process requirements ..9
 8.5.3 Construction based on product standards ...10
 8.6 Process requirements ..10
 8.6.1 Methodology ..10
 8.6.2 Trial section ..10
 8.7 Construction requirements ...10
 8.7.1 Removal and disposal of material not suitable for stabilisation (if required)10
 8.7.2 Preliminary pulverisation ...11
 8.7.3 Additional material for shape correction (if required) ...12
 8.7.4 Compacting and trimming of the surface prior to spreading of the stabilising agent .. 12
 8.7.5 Stabilising agent equipment ..12
 8.7.6 Spreading of stabilising agent ..12
 8.7.7 Time between spreading and mixing ...13
 8.7.8 Incorporation of stabilising agent ..13
 8.7.9 Final wet incorporation pass ...14
 8.7.10 Compaction and trimming after final wet incorporation of stabilising agent 15
1 Introduction

This Technical Specification applies to the stabilisation of in situ materials by the addition of a cementitious stabilising agent.

This Technical Specification shall be read in conjunction with MRTS01 *Introduction to Technical Specifications*, MRTS50 *Specific Quality System Requirements* and other Technical Specifications as appropriate.

This Technical Specification forms part of the Transport and Main Roads Specifications Manual.

2 Definition of terms

The terms used in this Technical Specification shall be as defined in Clause 2 of MRTS01 *Introduction to Technical Specifications*. Additional terms used in this Technical Specification shall be as defined in Table 2. Where indicated in Table 2, a more complete definition is contained in the referenced clause.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual stabilised layer thickness</td>
<td>Achieved stabilised layer thickness as measured from the bottom of stabilised layer to the top of compacted and trimmed stabilised layer</td>
</tr>
<tr>
<td>Allowable working time</td>
<td>The time measured from the commencement of incorporation (i.e. mixing) of stabilising agent into the material to completion of compaction and trimming</td>
</tr>
<tr>
<td>Bituminous coat</td>
<td>A sprayed bituminous surfacing with cover aggregate</td>
</tr>
<tr>
<td>Bulking</td>
<td>Increase in vertical height during the incorporation of the stabilising agent into material using a reclaimer / stabiliser. The increased vertical height of the material is measured from the surface level prior to this incorporation process - refer Figure 8.7.9</td>
</tr>
<tr>
<td>Curing materials</td>
<td>Materials applied to the exposed surfaces of the completed stabilised layer for curing</td>
</tr>
<tr>
<td>Design Depth</td>
<td>As specified in the construction drawings and contract documents – refer Figure 8.7.9</td>
</tr>
<tr>
<td>Finish surface level</td>
<td>Top level of the stabilised layer as specified in the drawings and contract documents – refer to Figure 8.7.9</td>
</tr>
<tr>
<td>Hydrated Lime</td>
<td>Hydrated lime is a granular form of lime consisting primarily of calcium hydroxide (Ca(OH)₂)</td>
</tr>
<tr>
<td>Lower reference level</td>
<td>Lower reference level is the finish surface level minus the design depth. It is the bottom level of the stabilised layer as specified in the drawings and contract documents - refer to Figure 8.7.9</td>
</tr>
<tr>
<td>Reclaimer / stabiliser</td>
<td>A single-rotor mix-in-place plant of a type (i.e. plant that mixes in situ) specifically designed for the dual task of reclamation and stabilisation work</td>
</tr>
<tr>
<td>Relative moisture ratio (RMR)</td>
<td>The relative moisture of the treated soil compared to optimum moisture content using standard compaction, express as a percentage</td>
</tr>
<tr>
<td>Stabilising agent</td>
<td>A cement, blended cement, cementitious blend or lime / fly ash blend</td>
</tr>
<tr>
<td>Target depth</td>
<td>Target depth is the mixing depth required by the reclaimer / stabiliser to achieve the lower reference level and shall consider the bulking height – refer Figure 8.7.9</td>
</tr>
</tbody>
</table>
3 Referenced documents

Table 3 lists documents referenced in this Technical Specification.

Table 3 – Referenced documents

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS 3582.1</td>
<td>Supplementary cementitious materials for use with portland and blended cement - Fly ash</td>
</tr>
<tr>
<td>AS 3582.2</td>
<td>Supplementary cementitious materials for use with portland and blended cement Slag - Ground granulated iron blast-furnace</td>
</tr>
<tr>
<td>AS 3972</td>
<td>Portland and blended cements</td>
</tr>
<tr>
<td>AS 4489.6.1</td>
<td>Test methods for limes and limestones - Lime index - Available lime</td>
</tr>
<tr>
<td>MRTS01</td>
<td>Introduction to Technical Specifications</td>
</tr>
<tr>
<td>MRTS05</td>
<td>Unbound Pavements</td>
</tr>
<tr>
<td>MRTS23</td>
<td>Supply and Delivery of Quicklime and Hydrated Lime for Road Stabilisation</td>
</tr>
<tr>
<td>MRTS35</td>
<td>Recycled Material Blends for Pavements</td>
</tr>
<tr>
<td>MRTS50</td>
<td>Specific Quality System Requirements</td>
</tr>
</tbody>
</table>

4 Standard test methods

The standard test methods listed in Table 4 shall be used in this Technical Specification.

Further details of test method numbers and test descriptions are given in Clause 4 of MRTS01 Introduction to Technical Specifications.

Table 4 – Standard test methods

<table>
<thead>
<tr>
<th>Property to be Tested</th>
<th>Method No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection of sampling and test locations</td>
<td>Q050</td>
</tr>
<tr>
<td>Sampling of soils, crushed rock and aggregates</td>
<td>Q060</td>
</tr>
<tr>
<td>Spot sampling of soils, crushed rock and aggregates</td>
<td>Q061</td>
</tr>
<tr>
<td>Moisture content</td>
<td>AS 1289.2.1.1, AS 1289.2.1.4, AS 1289.2.1.6</td>
</tr>
<tr>
<td>Stabilising agent content</td>
<td>Q134A</td>
</tr>
<tr>
<td>Working time of stabilised material</td>
<td>Q136A</td>
</tr>
<tr>
<td>Laboratory reference density</td>
<td>Q142A, Q143, Q144A</td>
</tr>
<tr>
<td>Relative compaction</td>
<td>Q140A, Q141A, Q141B</td>
</tr>
<tr>
<td>Sulfate content</td>
<td>AS 1289.4.2.1</td>
</tr>
<tr>
<td>Road roughness (surface evenness)</td>
<td>Q708B, Q708C, Q708D</td>
</tr>
<tr>
<td>Surface spread rate of stabilising agent</td>
<td>Q719</td>
</tr>
<tr>
<td>Plastic limit and plasticity index</td>
<td>Q104A, Q105</td>
</tr>
<tr>
<td>Linear shrinkage</td>
<td>Q106</td>
</tr>
<tr>
<td>Particle size distribution</td>
<td>Q103A</td>
</tr>
<tr>
<td>Property to be Tested</td>
<td>Method No.</td>
</tr>
<tr>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>UCS (unconfined compressive strength of stabilised materials)</td>
<td>Q115</td>
</tr>
<tr>
<td>Relative Moisture Ratio</td>
<td>Q250</td>
</tr>
<tr>
<td>Proof rolling test</td>
<td>Q723</td>
</tr>
<tr>
<td>Available lime</td>
<td>AS 4489.6.1</td>
</tr>
<tr>
<td>Wet strength</td>
<td>AS 1141.22</td>
</tr>
<tr>
<td>Wet/dry strength variation</td>
<td>AS 1141.22</td>
</tr>
<tr>
<td>Degradation factor</td>
<td>Q208B</td>
</tr>
<tr>
<td>Crushed particles</td>
<td>AS 1141.18</td>
</tr>
<tr>
<td>Flakiness index</td>
<td>Q201</td>
</tr>
<tr>
<td>California Bearing Ratio</td>
<td>Q113A</td>
</tr>
<tr>
<td>Deviation from a straightedge</td>
<td>Q712</td>
</tr>
<tr>
<td>Ball penetration</td>
<td>AG:PT/T251</td>
</tr>
<tr>
<td>Calculation of characteristic value of a lot</td>
<td>Q020</td>
</tr>
</tbody>
</table>

5 Quality system requirements

5.1 Hold Points, Witness Points and Milestones

General requirements for Hold Points, Witness Points and Milestones are specified in Clause 5.2 of MRTS01 Introduction to Technical Specifications.

The Hold Points, Witness Points and Milestones applicable to this Technical Specification are summarised in Table 5.1.

Table 5.1 – Hold Points, Witness Points and Milestones

<table>
<thead>
<tr>
<th>Clause</th>
<th>Hold Point</th>
<th>Witness Point</th>
<th>Milestone</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.2</td>
<td>1. Approval of construction procedures and construction program</td>
<td></td>
<td>Supply of the construction procedures and construction program for the stabilisation works (21 days)</td>
</tr>
<tr>
<td>7.1</td>
<td>2. Compliance of all materials, prior to their incorporation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3. Construction permitted to proceed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.3</td>
<td>4. Survey of services, utilities buildings and drainage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.4</td>
<td>5. Contractor’s determination of the allowable working time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.6.1</td>
<td>6. Approval of compaction based on a process requirement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clause</td>
<td>Hold Point</td>
<td>Witness Point</td>
<td>Milestone</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>---------------</td>
<td>-----------</td>
</tr>
<tr>
<td>8.6.2</td>
<td>1.</td>
<td>Construction of trial section (if process standard specified for compaction)</td>
<td></td>
</tr>
<tr>
<td>8.7.1</td>
<td>2.</td>
<td>Removal and disposal of material not suitable for stabilisation</td>
<td></td>
</tr>
<tr>
<td>8.7.2</td>
<td>3.</td>
<td>Preliminary pulverisation</td>
<td></td>
</tr>
<tr>
<td>8.7.4</td>
<td>4.</td>
<td>Compacting and trimming surface prior to spreading of the stabilising agent</td>
<td></td>
</tr>
<tr>
<td>8.7.6</td>
<td>5.</td>
<td>Spreading stabilising agent</td>
<td></td>
</tr>
<tr>
<td>8.7.8.4</td>
<td>6.</td>
<td>Nominating the target depth</td>
<td>Ordered spread rate of stabilising agent (14 days)</td>
</tr>
<tr>
<td>8.8.1.1</td>
<td>7.</td>
<td>Proof rolling test</td>
<td></td>
</tr>
<tr>
<td>9.8.2</td>
<td>7.</td>
<td>Acceptance</td>
<td></td>
</tr>
</tbody>
</table>

5.2 Construction procedures

5.2.1 General

The Contractor shall prepare documented procedures for all construction processes in accordance with Clause 6 of MRTS50 *Specific Quality System Requirements*.

The construction procedure described in Clause 5.2.2 shall be submitted to the Administrator.

5.2.2 Insitu stabilisation

A construction procedure detailing all work described in this Technical Specification shall be prepared.

The construction procedure shall include, but not be limited to:

Details of all plant associated with the work detailed in this Technical Specification.

Details of how services, utilities, buildings and drainage components shall be located and protected (refer to Clause 8.3).

Details of how services, utilities, buildings, drainage components, plant personnel shall be protected from damage, injury, etc. (refer to Clause 8.3).

The daily calibration procedures of spreader and verification of spread rates in the field (refer to Clause 8.7.6).

a) A detailed sequence of operations for all aspects of the stabilisation works, including, but not necessarily limited to:

i. details of joint locations

ii. details of joint overlaps
i. the length of each run
ii. the width of each run
iii. marking-out the extents of each run
iv. details of procedures for working up to, or against, structures, kerb, kerb and channel and road safety barriers, and such as bridges, access chambers, gullies, culverts and concrete medians and any existing pavement cutback point, and
v. curing methodology.

b) The proposed program of works, and
c) A testing program which shall include, but not be limited to, the testing methodology that shall be used to assess:
 i. stabilising agent spread rate
 ii. stabilisation target depth
 iii. relative moisture ratio
 iv. compaction standard
 v. geometric tolerances
 vi. actual stabilised layer thickness, and
 vii. strength gain of the stabilised layer with time (UCS test) if required.

The following shall also be submitted to the Administrator along with the construction procedure:
 a) details of the proposed source(s) of the stabilising agent(s)
 b) test results demonstrating compliance of the constituents of the proposed stabilising agent(s) to the required standards
 c) test results demonstrating the compliance of each proposed water source
 d) compliance test results (including Test Method Q136A Working Time of Stabilised Material if Applicable) and a representative sample of the unbound pavement material from each proposed source to be used for shape correction and / or to replace material not suitable for stabilisation, and
 e) where a cementitious blend containing lime or a lime / fly ash blend is specified, the available lime index of each proposed lime source.

The proposed construction procedure shall be submitted to the Administrator at least 21 days prior to the commencement of stabilisation works. Milestone

No stabilisation works shall be commenced until the construction procedure for the stabilisation works is acceptable to, and approved by, the Administrator. Hold Point 1

5.3 Conformance requirements

The conformance requirements which apply to lots of stabilised material covered by this Technical Specification are given in Clause 6 to Clause 9.
5.4 **Testing frequencies and lot sizes**

The maximum lot sizes shall be as stated in Table A1 of Appendix A or otherwise stated in Clause 1.1 of Annexure MRTS07B.1.

The minimum testing frequencies shall be as stated in Table A2, A3 and A4 of Appendix A or otherwise stated in Clause 1.2 of Annexure MRTS07B.1.

Material compliance testing requirements shall be as specified in Table A2 of Appendix A.

Construction compliance testing requirements shall be as specified in Table A3 of Appendix A.

Geometric and deviation from a straightedge compliance testing requirements shall be as specified in Table A4 of Appendix A.

Certification of the compliance of each stabilising agent with this specification is required for each source and for each load.

6 **Material**

6.1 **New material to replace material not suitable for stabilisation**

New material which is required to replace material not suitable for stabilisation shall be unbound granular material that complies with the requirements stated in Clause 2 of Annexure MRTS07B.1.

Where not so stated in the Annexure, materials shall be either of Type 1, Type 2, Type 3 or Type 4 unbound pavement material complying with the requirements of MRTS05 *Unbound Pavements*, or, RM001 pavement material complying with the requirements of MRTS35 *Recycled Material Blends for Pavements*.

Stabilised material shall not be used as new material for replacement material.

Additionally, any new material incorporated into the stabilisation shall have a water-soluble sulfate content not exceeding 1.9 grams of sulfate (expressed as SO$_4^-$) per litre.

6.2 **Additional material for shape correction**

The shape of the pavement shall be corrected prior to the importation of any overlay material.

Additional material that is required for shape correction shall be unbound granular material that complies with the requirements stated in Clause 3 of Annexure MRTS07B.1.

Where not so stated in the Annexure, materials shall be either of Type 1, Type 2, Type 3 or Type 4 unbound pavement material complying with the requirements of MRTS05 *Unbound Pavements*, or, RM001 pavement material complying with the requirements of MRTS35 *Recycled Material Blends for Pavements*.

Stabilised material shall not be used as additional material for shape correction.

Additionally, any new material incorporated into the Works shall have a water-soluble sulfate content not exceeding 1.9 grams of sulfate (expressed as SO$_4^-$) per litre.

6.3 **Stabilising agents**

The stabilising agent shall comply with the relevant Specifications and standards given in Table 6.3.

The type, estimated content and specified spread rate of the stabilising agent to be used at specific locations shall be as stated in Clause 9 of Annexure MRTS07B.1.
Table 6.3 – Stabilising agent requirements

<table>
<thead>
<tr>
<th>Agents</th>
<th>Relevant Technical Specification or Australian Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>Type GP or Type LH cement that complies with AS 3972</td>
</tr>
<tr>
<td>Blended Cement</td>
<td>Type GB, fly ash blend that complies with AS 3972</td>
</tr>
<tr>
<td>Cementitious blend (excluding GP, LH and GB cements)</td>
<td>Portland cement, that complies with AS 3972, blended with one or more of the following:</td>
</tr>
<tr>
<td></td>
<td>• “fine grade” fly ash complying with AS 3582.1</td>
</tr>
<tr>
<td></td>
<td>• ground granulated blast furnace slag (GGBFS) complying with AS 3582.2, or</td>
</tr>
<tr>
<td></td>
<td>• hydrated lime complying with MRTS23 Supply and Delivery of Quicklime and Hydrated Lime for Road Stabilisation.</td>
</tr>
<tr>
<td>Lime / fly ash blend</td>
<td>A blend of:</td>
</tr>
<tr>
<td></td>
<td>• hydrated lime complying with MRTS23 Supply and Delivery of Quicklime and Hydrated Lime for Road Stabilisation, and</td>
</tr>
<tr>
<td></td>
<td>• “fine grade” fly ash complying with AS 3582.1.</td>
</tr>
</tbody>
</table>

All of the components of the stabilising agent shall be completely, homogeneously and accurately blended / mixed by a dedicated blending plant prior to delivery to the job site. At the time of spreading each component of the stabilising agent shall:

a) comply with the relevant Standard(s) and Technical Specification(s), and

b) not be more than three months old, measured from its date of manufacture to the time of spreading.

6.4 Water

Water used should be potable. Where potable water is not available, the Administrator may consider water from other sources. In all cases, the water used shall contain less than 0.05% sulfates and be free from oil, acids, organic matter and any other matter that could be deleterious to the mixture.

Recycle water shall not be used for any other purpose without the written approval of the Administrator.

The sources(s) of water shall not be changed without the written approval of the Administrator.

7 Material compliance testing

7.1 General

No material shall be incorporated into the works unless it has been demonstrated, to the Administrator’s satisfaction, that the material to be used complies fully with the requirements of this Technical Specification. **Hold Point 2**

The Contractor is responsible for carrying out sufficient testing to ensure that the material complies with the requirements of this Technical Specification. However, the Contractor's testing program shall be such that the testing frequencies and number of tests are not less than those given in Clause 5.4.

The testing of individual samples shall be carried out in accordance with the Test Methods described in Table 4. Testing frequencies and lot sizes shall be as per the requirements of Clause 5.4.
The material / sources used in the Contract shall be the same as those for material supplied as samples or for which certificates of compliance with this Technical Specification are provided.

The costs associated with material compliance testing shall be deemed to be incorporated in the relevant work items.

7.2 Stabilising agents and water

Sampling and testing shall be carried out in accordance with the relevant Specifications.

A certificate of test results demonstrating compliance of each of the constituents of the proposed stabilising agent to the relevant standards or Specifications shall be provided for each load, or part thereof, of stabilising agent.

A certificate of test results demonstrating the compliance of each proposed water source shall be provided.

7.3 Unbound pavement material

Compliance testing of unbound pavement material used to replace material not suitable for stabilisation shall be carried out in accordance with the requirements of Clause 5.4.

Compliance testing of unbound pavement material used for shape correction shall be carried out in accordance with the requirements of Clause 5.4.

In all cases Type 1, Type 2, Type 3 and Type 4 material shall also comply with MRTS05 Unbound Pavements and RM001 materials shall also comply with MRTS35 Recycled Material Blends for Pavements.

8 Construction

Prior to acceptance (Clause 9.10), construction shall not proceed until the Administrator is satisfied that the requirements covered from Clause 8.1 to Clause 8.8.4.3 and Clause 8.8.5 have been adhered to by the Contractor. **Hold Point 3**

8.1 General

Construction of the stabilised layer shown in the Drawings or otherwise specified in the Contract, shall be completed as one layer.

The required design depth shall be stated in Clause 9 of Annexure MRTS07B.1.

The datum for measurement of the design depth (refer to Figure 8.7.9) shall be as stated in Clause 10 of Annexure MRTS07B.1.

Details of measuring the actual thickness of stabilised layer is described in Clause 8.8.4.1.2.

8.2 Program of works

The Contractor shall submit the proposed program of the stabilisation works to the Administrator at least 21 days prior to the commencement of stabilisation works, unless otherwise agreed to by the Administrator.

Stabilisation works shall not be commenced until the program has been approved by the Administrator (refer to Clause 5.2.2 and Hold Point 1).
8.3 Site services, utilities, buildings and drainage

A survey of the site to determine the location and depth of services, utilities, buildings and drainage components shall be carried out prior to commencement of construction. The survey shall include details of how these and plant and personnel on site shall be protected and how the stabilisation works shall be completed without any detrimental effects to them. All such details shall be included in the proposed construction procedure (refer to Clause 5.2.2).

Stabilisation works shall not commence until the survey has been completed and a copy of the report provided to the Administrator. Hold Point 4

8.4 Allowable working time

Compaction and trimming of the stabilised layer shall be completed within the allowable working time.

The allowable working time is measured from the commencement of the dry incorporation (i.e. mixing) of the stabilising agent into the insitu material, to the completion of compaction and trimming of the stabilised layer (excluding static multi-tyre rolling).

The maximum allowable working time shall be stated in Clause 9 of Annexure MRTS07B.1. If no such value is given, it shall be two hours.

Alternatively, the allowable working time may be determined by the Contractor prior to commencement of insitu stabilisation using Test Method Q136A. For Test method Q136A, the Contractor shall adopt the following:

- type of stabilising agent nominated in Clause 9 of Annexure MRTS07B.1,
- blend ratio of the stabilising agent nominated in Clause 9 of Annexure MRTS07B.1,
- estimated stabilising agent content nominated in Clause 9 of Annexure MRTS07B.1,
- Contractor’s proposed source(s) of stabilising agent(s),
- Contractor’s proposed source of water, and
- existing pavement materials blended with the Contractor’s proposed unbound granular import materials as appropriate.

All test results shall be reported to the Administrator. Hold Point 5

8.5 Construction process

8.5.1 General

The construction process shall be based on either a process requirement or a product standard. The method for this Contract shall be as stated in Clause 9 of Annexure MRTS07B.1.

8.5.2 Construction based on process requirements

If a process requirement is specified in Clause 9 of Annexure MRTS07B.1 construction shall:

a) incorporate the methodology and construction of trial sections in accordance with the requirements of Clause 8.6

b) comply with the construction requirements stated in Clause 8.7, and
c) comply with the product standards stated in Clause 8.8 except that compaction testing shall not be required on completed works other than trial sections, provided that the Contractor uses the same construction plant, process and methodology as that used for the trial section.

8.5.3 Construction based on product standards

If a product requirement is specified in Clause 9 of Annexure MRTS07B.1 construction shall:

a) comply with the construction requirements stated in Clause 8.7, and

b) comply with the product standards stated in Clause 8.8.

8.6 Process requirements

8.6.1 Methodology

Each section of the Works with a unique combination of stabilising agent type, stabilising agent spread rate, material(s) to be stabilised and depths shall be identified as a separate area for construction.

A trial section shall be constructed for each separate area for construction in accordance with the requirements of Clause 8.6.2.

The compaction of each trial section shall be tested in accordance with Clause 5.4 and checked for compliance with Clause 8.8.3. If the minimum characteristic value of the relative compaction results for the trial section is not less than the value specified in Clause 8.8.3, no further compaction testing shall be carried out for the balance of the area for construction that is represented by that trial section, provided that the same construction plant, processes and methodology is used to construct the remaining area as that used for the construction of the trial section.

If the minimum characteristic value of the relative compaction results for the trial section is less than the value specified in Clause 8.8.3, the trial section shall be rectified so that it complies with this Technical Specification, and an additional trial section shall be constructed and assessed in accordance with this Clause 8.6.

Construction based on a process requirement and a trial shall not be used for the balance of the Works without approval of the Administrator. **Hold Point 6**

8.6.2 Trial section

A trial section shall be constructed using the same construction plant, processes and methodology that are proposed to be used for the remainder of the works represented by the trial section. **Witness Point 1**

A trial section shall be at least 200 metres long and three metres wide and include a longitudinal joint.

All operations, testing, etc. required by this Technical Specification, including compaction testing, shall be used in the construction and testing of a trial section.

8.7 Construction requirements

8.7.1 Removal and disposal of material not suitable for stabilisation (if required)

Material not suitable for stabilisation shall include:

a) Any particle or conglomeration, that exists after preliminary pulverisation, with a dimension greater than 75 mm along any axis.
b) Any material(s) deemed unsuitable by the Administrator, which may include:
 i. concrete
 ii. cement treated patches, and
 iii. asphalt patches where the total asphalt thickness is greater than 50 mm, and

c) Any additional requirements as stated in Clause 4 of Annexure MRTS07B.1.

At least seven days prior to the date shown in the Contractor’s program of works for the removal of material not suitable for stabilisation, the Administrator will mark out patches and / or identify unsuitable materials that are to be removed and replaced.

Where material not suitable for stabilisation is encountered, the volume to be removed shall be agreed with the Administrator prior to commencing removal and replacement of the material. Witness Point 2

Material that is unsuitable for stabilisation shall be removed and disposed of in accordance with Clause 10 MRTS01 Introduction to Technical Specifications.

New material conforming to the requirements stated in Clause 6.1 shall be used to replace the material removed. It shall be spread, compacted and trimmed to the alignment, heights and shapes specified in the Drawings or Contract for the completed work.

Compaction of the new material shall be administrated through either product requirement (Clause 9.3) and/or process requirement (Clause 9.2). This shall be approved by the Administrator. The minimum characteristic value of the relative compaction results shall not be less than 100%. This compaction testing requirement is not applicable if the layer thickness is less than 100 mm.

8.7.2 Preliminary pulverisation

The materials to be stabilised shall be pulverised in accordance with the requirements of this clause. One pass of a reclaimer / stabiliser shall be used to pulverise the material to be stabilised to a depth that is 50 mm less than the design depth (50 mm above the lower reference level). Witness Point 3

Preliminary pulverisation shall occur:

a) after the removal and replacement of material deemed by the Administrator as material not suitable for stabilisation

b) prior to the addition of shape correction or overlay material, and

c) prior to the addition of the stabilising agent.

Any additional patches identified during preliminary pulverisation as material not suitable for stabilisation and accepted by the Administrator as being material not suitable for stabilisation, shall be removed and replaced as specified in Clause 8.7.1.

Any particle or conglomeration with a dimension greater than 75 mm along any axis shall be removed from the pulverised material and the voids made good prior to stabilisation. Voids shall be made good either by using either new material in accordance with Clause 6.1 or excess pulverised material that is both adjacent to the void and suitable for stabilisation.
8.7.3 Additional material for shape correction (if required)

The shape of the pavement shall be corrected prior to the importation of any overlay material. Additional material required for shape correction shall be as specified in Clause 6.2 and shall be spread after preliminary pulverisation has been completed. It shall be spread onto the surface of the pavement to a shape suitable for stabilisation and compacted and trimmed to the alignment, heights and shapes specified in the Drawings or Contract.

Compaction of the additional material required for shape correction shall be administrated through either process requirement (refer Clause 9.2) and / or product requirement (refer to Clause 9.3). This shall be approved by the Administrator. The minimum characteristic value of the relative compaction results shall not be less than 100%. This compaction testing requirement is not applicable if the layer thickness is less than 75 mm.

8.7.4 Compacting and trimming of the surface prior to spreading of the stabilising agent

Prior to spreading of the stabilising agent, the surface shall be shaped, compacted and trimmed to a degree that is sufficient to facilitate stabilisation specified in the Contract. **Witness Point 4**

8.7.5 Stabilising agent equipment

Stabilising agent shall be transported, stored and spread using equipment that is both waterproof and watertight. Equipment used to transfer the stabilising agent shall also be waterproof during the transfer process. All such equipment shall be emptied, cleaned and dried prior to the introduction of each type of stabilising agent to be used in the stabilisation works.

The stabilising agent shall be spread using a purpose-built calibrated spreader. The stabilising agent and water shall be incorporated into the material using a reclaimer / stabiliser. Where a reclaimer / stabiliser with a calibrated integrated spreader is nominated (refer to Clause 5 of Annexure MRTS07B.1), the stabilising agent shall be incorporated directly into the material to be stabilised.

8.7.6 Spreading of stabilising agent

The stabilising agent shall be uniformly spread over the insitu material at a controlled rate (mass per unit area, kg/m²).

The maximum amount of stabilising agent to be spread in one pass shall be 20 kg/m² to avoid wastage. The number of passes shall be calculated to comply with this requirement.

Traffic shall be stopped during spreading of stabilising agent if wind direction is such that airborne cementitious blends are impeding through traffic.

At the start of each individual spreading run, the surface spread rate of the stabilising agent shall be determined using the surface spread rate Test Method (Q719). The surface spread rate test shall be carried out within a distance of 35 m from the start of each individual spreading run. After the purpose built calibrated spreader / integrated spreader has spread over the mat or tray/s, the spreader shall be halted, the actual spread rate measured, and this result compared with allowable tolerances specified in Clause 8.8.1.3. If the spread rate result is within the allowable tolerance, the spreader shall be allowed to complete the run. If the spread rate result is outside the allowable tolerance, additional surface spread rate tests shall be repeated in 35 m intervals until the measured surface spread rate result is within the tolerance stated in Clause 8.8.1.3. The Contractor shall undertake corrective action in the area which has nonconforming surface spread rates. **Witness Point 5**
Additional surface spread rate tests at other locations (for example middle and / or end of a run) shall be conducted upon the request of the Administrator.

Once the stabilising agent has been spread, no traffic, other than the construction plant employed for the stabilisation work, shall travel over it.

All surface spread rate test results shall be recorded and included in the Contractor’s quality records (refer to Clause 9.5).

8.7.7 Time between spreading and mixing

The maximum allowable time between spreading the stabilising agent and incorporation into the insitu material shall be as stated in Clause 9 of Annexure MRTS07B.1. Where no such time is stated in the Annexure, the maximum time between spreading and mixing shall be 30 minutes.

8.7.8 Incorporation of stabilising agent

Incorporation of the stabilising agent shall be achieved using a reclaimer / stabiliser.

8.7.8.1 Single dry incorporation pass and single wet incorporation pass

Where a single pass is required to spread the ordered amount of stabilising agent specified in Clause 8.8.1.1, at least two incorporation passes shall be undertaken. The first dry incorporation pass shall be to a depth that is 50 mm less than design depth (50 mm above the lower reference level).

The Contractor shall ensure that no excess stabilising agent is spilt into the adjoining section during the spreading and dry incorporation pass. This shall be achieved by:

a) ensuring the stabiliser slows down as it approaches the limit of the section, and

b) any excess stabilising agent which is spilt into the adjoining section is spread by the grader back into the section which is currently being stabilised.

Compacting, shaping and trimming of surface prior to the wet incorporation pass shall be undertaken as per Clause 8.7.8.4. The final wet incorporation pass shall be to a depth specified by the target depth (to ensure mixing to the lower reference level), and moisture content in accordance with Clause 8.7.9.

8.7.8.2 Multiple dry incorporation passes

Where more than one pass is required to spread the ordered amount of stabilising agent specified in Clause 8.8.1.1, the stabilising agent be incorporated into the material after each spreading pass. All dry incorporation passes of the stabilising agent shall be to a depth that is 50 mm less than design depth (50 mm above the lower reference level).

The Contractor shall ensure that no excess stabilising agent is spilt into the adjoining section during the spreading and dry incorporation passes. This shall be achieved by:

a) ensuring the stabiliser slows down as it approaches the limit of the section, and

b) any excess stabilising agent which is spilt into the adjoining section is spread by the grader back into the section which is currently being stabilised.
8.7.8.3 Compaction and shaping of surface between dry incorporation passes

Adequate compaction shall be completed after each application of stabilising agent has been incorporated into the insitu material as stated in Clause 8.7.8.2. This shall be carried out using a roller that can achieve relatively uniform compaction over the depth of the stabilised layer. The compacted surface shall be adequately shaped to the specified crossfall to allow for subsequent spreading of the stabilising agent.

8.7.8.4 Compaction and trimming of surface prior to the final wet incorporation pass

Prior to the final wet incorporation pass, the surface level shall be compacted and shaped to the specified crossfall. Surface level heights higher than specified in the Drawings or Contract after compaction and shaping due to the effects of ‘bulking’ shall be uniform and shall be identified. In this case, the difference in height between specified in the Drawings or Contract and attained (bulking) shall be added to the design depth to determine the stabilising target depth for the final wet incorporation pass (refer to Figure 8.7.9). **Witness Point 6**

Alternatively, the surface shall be shaped, compacted and trimmed to the alignment, height and crossfall specified in the contract documents prior to the final wet incorporation pass.

8.7.9 Final wet incorporation pass

The distribution of the stabilising agent and water shall be uniform throughout the entire layer depth for the area stabilisation. The moisture content shall be adjusted as necessary during the wet incorporation process to achieve the moisture content stated in Clause 8.8.2. The target depth shall ensure mixing to the lower reference level whereby meeting the requirements of Clause 8.8.4.1.

Unless otherwise approved by the Administrator, water shall be added by means of a controlled pressure feed distribution system located inside the mixing chamber of the reclaimer / stabiliser or stabiliser. This system shall be capable of spraying varying rates across its width.

Where test results or visual inspection by the Administrator indicates that any of the requirements stated in this clause have not been met, additional mixing passes shall be carried out to improve the uniformity of the:

a) materials to be stabilised

b) distribution of the stabilising agent, and

c) distribution of water.

No additional or separate payment shall be made for any additional passes ordered by the Administrator.
8.7.10 Compaction and trimming after final wet incorporation of stabilising agent

Immediately after wet incorporation pass, the stabilised area shall be compacted with adequate rollers (refer to Clause 8.7.15) to achieve the compaction stated in Clause 8.8.3.

Pad foot marks shall be removed to prevent differential compaction and the pad foot marks reflecting to the surface after trafficking. The contractor shall ensure that no marks caused by a pad foot roller shall remain on the surface. A minimum cut to -100 mm from the Finished Surface Level (FSL) of the stabilised layer is required to completely remove the pad foot marks and not create a thin false layer when the material is reinstated.

When removing the pad foot marks, the stabilised material shall not be wasted. Once the pad foot marks have been completely removed, the stabilised material can be reinstated to allow the completion of compaction and trimming.

Initial shaping of the stabilised surface shall be carried out after the stabilised layer has been compacted.
The trimmed surface shall be free from loose pockets, holes, bumps and lenses of materials. The identified depressions shall be filled with additional stabilised material that is mixed and placed within its allowable working time as specified in Clause 8.4.

No marks caused by any roller or stabilisation plant shall be left on the surface of the stabilised layer.

All final trimming shall involve cutting to waste. All material cut to waste shall be disposed of in accordance with Clause 10 of MRTS01 Introduction to Technical Specifications. No separate payment shall be made for the disposal of material cut to waste. The cost of all activities associated with the disposal of material cut to waste shall be deemed to be incorporated into the relevant work items.

Compaction and trimming (excluding multi-tyre rolling) shall be completed within the allowable working time as specified in Clause 8.4.

8.7.11 Construction joints

8.7.11.1 General

Joints shall be constructed such that the material at the joints complies with the requirements of this Technical Specification.

A construction joint (longitudinal or transverse) shall be deemed fresh when the material on each side of the joint has been stabilised, placed and compacted within the allowable working time (refer to Clause 8.4) of the stabilised material constructed first.

8.7.11.2 Longitudinal joints

Longitudinal joints shall not be located in the through traffic wheel paths.

Where a fresh longitudinal joint between adjacent runs is to be compacted, the outside 300 mm of material from the first run shall be left uncompacted until the adjacent material is ready for compaction. The joint shall be water cured during this period. When the fresh joint is compacted the roller shall be partially supported on the portion of the first run that has been previously compacted.

To ensure complete stabilisation across the full width of the pavement, the minimum distance for cutting back / overlapping into previously stabilised material shall be the greater of 100 mm or the distance to a point where the stabilised material complies with this Technical Specification. The overlap at a change of crossfall or crown shall be carefully considered to comply with the longitudinal joint requirements of this clause and Clause 8.8.4.

No separate or additional payment shall be made for the disposal of material cut to waste. The cost of all activities associated with the disposal of material cut to waste shall be deemed to be incorporated into the relevant work items.
When constructing a longitudinal joint in accordance with this clause and Figure 8.7.11.2, the Contractor must ensure that the final wet incorporation pass encompasses the entire area where the stabilising agent has been spread and mixed.

To achieve this, the Contractor may consider adopting the following process:

- Mix the stabilising agent 150mm offset from the longitudinal joint location which is commonly the crown and/or centreline as shown in Figure 8.7.11.2 (refer to Step 2 in Figure 8.7.11.2).
- Complete the final wet incorporation pass ensuring the stabiliser cuts into the adjoining stabilised materials thus forming a sufficient overlap (refer to Step 3 in Figure 8.7.11.2).
8.7.11.3 Transverse joints

For transverse joints, the adjoining stabilised section shall be mixed using a stabiliser / reclaimer by the greater of 1.5 m or the length ordered by the Administrator.

8.7.12 Curing

A curing operation shall commence immediately after the completion of compaction. Curing operation shall be carried out with extreme care to avoid any damage to the stabilised layer.

The stabilised layer shall be cured using water by maintaining the layer surface and edges in a continuously damp condition, using a uniformly applied fine mist, until the stabilised layer is covered by an overlying pavement layer or a sprayed bituminous surfacing with cover aggregate. Water shall be applied in a manner such that slurrying of the surface, pavement instability and erosion and / or leaching of the stabilising agent are all avoided. During the water curing process, no heavy construction equipment shall be allowed on the stabilised layer.

8.7.13 Bituminous surfacing

Unless otherwise approved by the Administrator, a bituminous surfacing with a cover aggregate shall be applied within seven calendar days of completion of the stabilised layer.

8.7.14 Maintenance of the stabilised layer

The stabilised layer shall be maintained by the Contractor until a bituminous surfacing with a cover aggregate is applied, or until the stabilised layer is covered by another pavement layer, or until the Administrator accepts and takes responsibility for that area (whichever is the longer).

The surface of the stabilised layer shall be kept moist, in good order, in good condition and free from contamination. Construction and other traffic shall not traverse the stabilised layer where damage to the surface may occur.

No separate or additional payment shall be made for maintenance of the stabilised layer. The cost of all activities associated with maintenance of the stabilised layer shall be deemed to be incorporated into the relevant work items for the stabilised layer.

8.7.15 Minimum requirements and numbers of particular plant

The minimum requirements and numbers of particular plant that shall be on site at all times during the stabilisation works shall be as stated in Clause 5 of Annexure MRTS07B.1. Where not so stated in the Annexure, the minimum requirements and numbers of particular plant that shall be on site at all times during the stabilisation works shall be as stated in Table 8.7.15.

Table 8.7.15 – Minimum requirements and numbers of particular plant

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum requirement for each piece of plant</th>
<th>Minimum number of units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reclaimer / stabiliser or Integrated spreader / reclaimer / stabiliser</td>
<td>a) Minimum power capacity of 155 kW/m of the drum width. b) Capable of mixing to the specified depth. c) Capable of supplying water such that incorporation rates can be varied across the full width of the stabilising box and incrementally across the box.</td>
<td>1</td>
</tr>
</tbody>
</table>
Description

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum requirement for each piece of plant</th>
<th>Minimum number of units</th>
</tr>
</thead>
<tbody>
<tr>
<td>d)</td>
<td>Calibrated and capable of uniformly spreading stabilising agent to varying widths (if integrated spreader / reclamer / stabiliser).</td>
<td></td>
</tr>
<tr>
<td>Purpose built calibrated spreader</td>
<td>Calibrated with load cells and capable of uniformly spreading stabilising agent using a fixed bulk bin feeding a mechanical or hydraulic driven spreading rotor to varying widths.</td>
<td>1</td>
</tr>
<tr>
<td>Vibrating pad foot roller</td>
<td>For layer thickness < 200 mm: not required</td>
<td>For layer thickness 200-300 mm: 21 tonne</td>
</tr>
<tr>
<td>Vibrating smooth drum roller</td>
<td>For layer thickness < 200 mm: 18 tonne</td>
<td>For layer thickness 200-300 mm: 18 tonnes</td>
</tr>
<tr>
<td>Multi-tyre roller</td>
<td>Minimum 12 tonnes.</td>
<td></td>
</tr>
<tr>
<td>Water truck</td>
<td>Capacity of 6000 litres.</td>
<td></td>
</tr>
<tr>
<td>Grader</td>
<td>Manned by Final Trim Operator.</td>
<td></td>
</tr>
</tbody>
</table>

The Contractor shall utilise adequate roller sizes and rolling patterns to achieve the specified relative compaction.

When compacting an insitu stabilised layer thickness of 200-300 mm a padfoot roller is required for initial compaction. After the removal of padfoot marks (Clause 8.7.10), care needs to be taken by the Contractor to ensure that the final smooth drum rolling does not de-compact (crack) the stabilised layer.

Typically, insitu stabilised layer thicknesses are not less than 200 mm. However for layer thickness < 200mm, the Contractor shall use a combination of smooth drum and multi-tyre rollers which has demonstrated it will achieve the specified relative compaction.

8.7.16 Conditions under which stabilisation shall not proceed

The entire stabilisation process shall not proceed in any of the following situations:

- a) during rainfall
- b) when rainfall appears to be imminent
- c) during periods when the wind is strong enough to cause particles of the stabilising agent to become airborne
- d) during conditions that may result in the work causing nuisance or danger to people, property, the environment, or live stock
- e) when the pavement temperature, measured 50 mm below the surface, drops below 10°C, or
- f) when the air temperature, measured in the shade, exceeds 40°C.

8.8 Product standards

Compliance testing of the pavement shall be undertaken for each lot. Where a process standard is specified the compaction requirements in this clause apply to trial sections but not to other sections.
Where a product standard is specified the compaction requirements in this clause apply to all sections / lots.

8.8.1 Stabilising agent spread rate

8.8.1.1 Ordered spread rate

At least 14 days prior to the commencement of stabilisation works, the Administrator will confirm or adjust the specified stabilising agent spread rate and any blend ratio stated in Clause 9 of Annexure MRTS07B.1.

The confirmed or adjusted stabilising agent spread rate shall be the ordered spread rate of stabilising agent. **Milestone**

8.8.1.2 Corrected content

Notwithstanding the ordered spread rate of stabilising agent given in Clause 8.8.1.1, the content to be used for the stabilisation works shall be the corrected content, CC_0, as calculated below.

Where the stabilising agent does not contain lime, $CC_0 = C_0$.

Where a cementitious blend containing hydrated lime or a hydrated lime / fly ash blend is specified for the stabilising agent:

$$CC_0 = C_0 \left[\frac{P_{NL}}{100} + \left(\frac{P_L}{100} \times \frac{A_{LO}}{A_{LA}} \right) \right]$$

where:
- CC_0 = corrected content of stabilising agent in percent (%)
- C_0 = ordered content of stabilising agent in percent (%) as defined in Clause 8.8.1.1
- P_{NL} = proportion of the blend in percent (%) that is not hydrated lime
- P_L = proportion of the blend in percent (%) that is hydrated lime
- A_{LO} = available lime index in percent (%) on which C_0 is based, and
- A_{LA} = actual available lime index in percent (%) for the (hydrated) lime to be used in the Contract

8.8.1.3 Actual spread rate

The actual spread rate shall be represented by the average of the surface spread rates of the stabilising agent for each lot.

The actual stabilising agent spread rate shall be within ± 10% of the ordered spread rate as defined in Clause 8.8.1.1.

8.8.2 Relative moisture ratio

The Relative Moisture Ratio (RMR) during the final wet incorporation pass shall be determined in accordance with Clause 9.7 and shall be between 90% and 105%.

8.8.3 Compaction standard

The minimum characteristic value of the relative compaction results for the full thickness of the stabilised layer shall not be less than 100% (standard compaction).
8.8.4 Geometrics

The stabilised layer shall be constructed so as not to depart from the alignment, widths, thicknesses, lengths, heights and shapes specified in the Drawings or Contract by more than the tolerances stated in Clause 8.8.4.1 to Clause 8.8.4.4.

8.8.4.1 Geometrics, thickness

8.8.4.1.1 General

At any point of the completed stabilised layer, the measured actual stabilised layer thickness shall be within tolerance given in Clause 8.8.4.2.1 of the design depth specified in Clause 9 of Annexure MRTS07B.1.

8.8.4.1.2 Measuring actual stabilised layer thickness

During each final wet incorporation pass and prior to compaction, depth checks shall be undertaken to determine the lower reference level at the bottom of the stabilised layer. The frequency of the depth checks shall be stated in Clause 5.4.

Following compaction and final trim, levels shall be obtained from the top of the finished stabilised layer. They shall be recovered in the horizontal plane to an accuracy of ± 50 mm of the same location as those from which the lower reference levels were obtained. The difference between the finished surface level and lower reference level shall be recorded as the actual stabilised layer thickness.

The actual stabilised layer thickness shall be recorded by the Contractor and reported to the Administrator. The record for each thickness determination shall include:

a) the position and measurement of the lower reference level for each test location
b) the position and measurement of the finished surface level for each test location (shall be recoverable in the horizontal plane to an accuracy of ± 50 mm)
c) the actual stabilised layer thickness result obtained by subtracting the finish surface level measurement from the lower reference level measurement for each test location (rounded to the nearest 1 mm), and
d) the minimum characteristic value calculated in accordance with Clause 12 of MRTS01 Introduction to Technical Specifications, of all stabilised layer thickness measurements for each lot.

8.8.4.2 Geometrics, vertical tolerances

8.8.4.2.1 Primary tolerance

A primary tolerance shall apply to the height of any point on the finished surface of the stabilised layer. The primary tolerance shall be as stated in Clause 6.1 of Annexure MRTS07B.1 and be one of the alternatives given in Table 8.8.4.2.1. If no such indication is given, the primary tolerance shall be Alternative B (-5 and +15 mm).
Table 8.8.4.2.1 – Primary tolerance for the height of any point on the surface of the stabilised layer

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Primary Tolerance (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>- 5 and + 10</td>
</tr>
<tr>
<td>B</td>
<td>- 5 and + 15</td>
</tr>
<tr>
<td>C</td>
<td>Thickness only</td>
</tr>
</tbody>
</table>

In all cases a primary tolerance shall also apply for the thickness of the completed stabilised layer (refer to Clause 8.8.4.1.1).

Alternative A primary tolerance (-5 to +10 mm) is recommended for an insitu stabilised layer when the subsequent overlying layer is asphalt.

Where ‘thickness only’ Alternative C has been specified in Clause 6.1 of Annexure MRTS07B.1, the following shall apply:

a) height of collimation shall be used to determine the actual stabilised layer thickness
b) minimum testing frequency for determining the actual stabilised layer thickness shall be at each compaction test location (refer Clause 9.6), and
c) at any point of the completed stabilised layer the measured thickness shall be within -5 mm and +15 mm of the design depth stated in Clause 9 of Annexure MRTS07B.1.

8.8.4.3 Geometrics, horizontal tolerances

The horizontal position of any point on the pavement shall not differ from the corresponding point shown on the Drawings or as otherwise specified in the Contract, by not more than ±50 mm, except where alignment of the pavement with an existing pavement or structure is necessary. In this case, the new work shall be joined neatly to the existing work or structure in a smooth manner as shown on the Drawings or as otherwise specified in the Contract. If the Drawings or other Contract documents do not demonstrate, describe or specify how new work is to join to existing pavement or structures then it shall be done in a manner that is acceptable to the Administrator.

8.8.4.4 Additional tolerances

8.8.4.4.1 General

Where required by Clauses 8.8.4.4.2, 8.8.4.4.3 and 8.8.4.4.4, additional tolerances shall apply to the stabilised layer.

Additional work shall be carried out by the Contractor where necessary to achieve these additional tolerances. Payment for any such work shall be deemed to be included in the Contractor’s scheduled rate for the relevant work items.
8.8.4.4.2 Deviation from a straightedge

Clause 6.2.1 of Annexure MRTS07B.1 specifies whether a deviation from a straightedge tolerance is to be applied. If no indication is given, deviation from a straightedge tolerance shall apply.

The deviation from a 3 m long straightedge placed anywhere on the surface of a layer shall not exceed the limits stated in Clause 6.2.2 of Annexure MRTS07B.1, due allowance being made for design shape, where relevant.

The limit stated in Clause 6.2.2 of Annexure MRTS07B.1 shall be one of the alternatives given in Table 8.8.4.4.2. If no limit is given, it shall be Alternative D (5 mm).

Table 8.8.4.4.2 – Tolerance for deviation from a straightedge

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Maximum Value (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>5</td>
</tr>
<tr>
<td>E</td>
<td>8</td>
</tr>
<tr>
<td>F</td>
<td>15</td>
</tr>
</tbody>
</table>

8.8.4.4.3 Crossfall

Clause 6.3 of Annexure MRTS07B.1 specifies whether a crossfall tolerance applies, if no indication is given, crossfall tolerance shall apply.

The crossfall shall not depart from the corresponding crossfall shown in the Drawings or Contract by more than 0.5% absolute.

The crossfall shall be measured:

a) Between any two points more than two metres apart except where a pavement verge is less than two metres wide. For pavement verges less than two metres wide, the measurement shall be made between the extreme edges of the pavement verge on each side of the pavement.

b) Transverse to the centre line of the carriageway, and

c) Within the boundaries of a cross-section element that has a constant crossfall.

8.8.4.4.4 Road roughness (surface evenness)

Clause 6.4.1 of Annexure MRTS07B.1 specifies whether a surface evenness tolerance applies to the stabilised layer. If no indication is given, surface evenness tolerance shall apply.

The surface evenness of a stabilised layer shall be such as to provide a road roughness value not exceeding the specified road roughness (Rₚ) stated in Clause 6.4.2 of Annexure MRTS07B.1 or, where not so stated, not exceeding 1.94 m/km.

Calculation of road roughness should accurately represent the ride quality of the complete pavement. It is generally accepted that the inclusion of other road features within the pavement are likely to reduce ride quality.
In accordance with the test method adopted, these features are required to be noted during roughness testing. The following features are typically allowed to be excluded from the ride quality assessment:

- roundabouts
- railway lines
- bridge joints, and
- inspection pit covers (for example, drainage manholes).

The Contractor should nominate a methodology and provide calculations on ride quality for the Administrators acceptance, showing how each feature has been excluded from the assessment and the subsequent lot structure.

Under no circumstances should pavement features (including joints) or signalised / unsignalised intersections (other than roundabouts) be excluded from the ride quality assessment without the express agreement of the Administrator.

8.8.5 Surface finish

The finished surface of any stabilised pavement layer shall:

- be hard and homogenous in appearance
- not be friable when subject to mechanical brooming
- not have transverse shrinkage cracks
- not have any loose, segregated or contaminated areas
- have the course particles slightly exposed
- not be affected by delamination, and
- not visibly deflect under load when proof rolled in accordance with Clause 9.8.

For stabilised layers that are to be covered by a sprayed bituminous treatment, the surface shall have a maximum ball penetration value of 3.0 mm when tested in accordance with Clause 9.9.

For stabilised layers that are not covered by a sprayed bituminous treatment, ball penetration testing shall not apply.

The ball penetration test shall apply to a completed stabilised layer, unless stated otherwise in Clause 7 of Annexure MRTS07B.1. If no indication is given, the ball penetration test shall apply for stabilised layers that are to be covered by a sprayed bituminous treatment.

It is intended that these requirements apply to the condition of the pavement surface immediately prior to application of the surfacing treatment/layer. The Contractor may need to undertake additional controls beyond the basic construction activities (compaction, trimming and so on) to ensure these requirements are satisfied.
Where a stabilised pavement layer is required to be covered by a sprayed bituminous treatment, particular attention needs to be given to the surface finish of the stabilised pavement layer in order to ensure good adhesion. This is particularly relevant when the treatment includes polymer modified bitumen.

The following factors are important to ensure the successful adhesion of a sprayed bituminous treatment:

- All dust must be removed from the pavement immediately before spraying
- Compaction of the stabilised pavement layer may form a thin lens of dried slurry on the surface of the pavement. This can appear hard, however may be prone to ‘shattering’ or delamination and should be removed before spraying
- Variation in the surface ‘tightness’ may warrant the specification of either an AMC0 or AMC00 prime (or an equivalent emulsion prime accepted by the Administrator). The effectiveness of any prime should be assessed in field trials.

Inadequate curing can lead to an excessively dusty surface, which may be difficult to prepare. To address this, curing should be undertaken in accordance with Clause 8.7.12 to ensure the pavement remains continuously damp.

9 Construction compliance testing

9.1 General

Unless otherwise stated in this Technical Specification, the selection of sampling or test locations shall be carried out using random stratified sampling. Exceptions include testing of:

a) geometrics (Clause 9.4)
b) the stabilising agent content (Clause 9.5)
c) proof rolling of pavement layers (Clause 9.8), and

the Contractor is responsible for performing sufficient tests to ensure that the pavement complies with the standards and requirements of this Technical Specification. However, the Contractor’s testing program shall be such that the testing frequencies and number of tests are not less than those specified in Clause 5.4.

9.2 Process requirements

Where construction has been carried out using process requirements, checking for compliance with the specified requirements shall be carried out during and after the construction operation, as relevant. Except for compaction, compliance checking shall be carried out in accordance with Clause 5.4. If process requirement is specified for compaction, the minimum testing frequencies and minimum number of tests for compaction specified in Clause 5.4 apply to trial sections and do not apply to other sections.

Notwithstanding this, the requirements of Clauses 8.5.2, 8.6 and 8.7 shall apply.
9.3 Product standards

Where construction has been carried out using product standards, compliance testing of the stabilised layer shall be undertaken for each lot. If product standard is specified, the minimum testing frequencies and minimum number of tests for compaction specified in Clause 5.4 apply. Notwithstanding this, the requirements of Clauses 8.5.3, 8.7 and 8.8 shall apply.

9.4 Geometrics

9.4.1 General

All geometric tolerances, except for surface evenness, shall be checked at regular intervals not greater than the frequency specified in Clause 5.4.

9.4.2 Surface evenness

The surface evenness of a stabilised pavement layer shall be measured by road roughness as per Test Methods Q708B, Q708C and Q708D.

The minimum length of a lot for this test shall be 100 m and the maximum length of a lot for this test shall be 500 m.

9.5 Stabilising agent spread rate

The stabilising agent spread rate shall be determined by Test Method Q719. The stabilising agent spread rate shall be within the allowable tolerance specified in Clause 8.8.1.3 in all cases.

The results of all surface spread rate tests shall be recorded and included in the quality records and reported to the Administrator. The record and report for each surface spread rate test shall include:

a) the position, date and time
b) all values and calculations, including ordered spread rate and assumptions, used to calculate the surface spread rate, and
c) the calculated surface spread rate.

The testing program shall be discussed and agreed with the Administrator prior to commencement of stabilising operations (refer to Clause 5.2.2 Hold Point 1).

In addition, the tonnage of stabilising agent placed during each spreading run shall be recorded and reported to the Administrator. The record and report for each spreading run shall include:

a) the start position, date and time
b) the end position, date and time
c) the length of the run
d) the width of the run
e) the tonnage of stabilising agent in the spreader at the start of the run
f) the tonnage of stabilising agent at 500 m intervals (if the length of the run exceeds 500 m)
g) the tonnage of stabilising agent in the spreader at the end of the run
h) the tonnage of stabilising agent spread for each 500 m interval (if the length of the run exceeds 500 m), and
i) the tonnage of stabilising agent spread for the entire run.

9.6 Compaction

The compaction standard for each lot shall be represented by the minimum characteristic value of the compaction results. The characteristic value shall be calculated as stated in Clause 12 of MRTS01 Introduction to Technical Specifications or Test Method Q020 using the individual relative compaction results determined from testing each lot.

Where the minimum characteristic value of a lot’s compaction results does not comply with the requirements of this specification, the Contractor shall raise a suitable non-conformance report. The Administrator should review each individual compaction result. The review may necessitate the need for additional investigation to identify the underlying cause(s) for the noncompliance. The Administrator should also review the homogeneity of the works.

The locations of all tests undertaken for the determination of in situ dry density and relative compaction shall be at the same locations of samples taken to determine the corresponding laboratory reference density.

Sampling of stabilised materials to determine the laboratory reference density as detailed in Test Method Q142A shall take place immediately after the final wet incorporation pass, and prior to the commencement of compaction of the stabilised material.

The relative compaction of the stabilised material as detailed in Test Method Q140A shall be determined for the entire thickness of the stabilised layer.

9.6.1 Time limits for reference density laboratory compaction

Following sampling, reference density testing shall be completed to a stage where laboratory compaction has been completed within two hours of the commencement of the final wet incorporation pass for the corresponding lot.

To comply with the above requirements, the Contractor may need to consider the establishment of an annex laboratory facility onsite.

Additionally, following sampling, oven drying of all specimens used to determine the moisture content shall commence within the same work shift as the stabilisation works for the corresponding lot.

9.6.2 Time limits for the determination of compacted density

Unless otherwise approved by the Administrator, the determination of compacted density using Test Method Q141A or Q141B shall be completed to a stage where the wet density has been determined within 24 hours after the end of the work shift where stabilisation works were completed for the corresponding lot.

Additionally, any moisture sub-sample is being oven dried within the same work shift as the compacted density testing for Test Method Q141A or Q141B is being undertaken.
9.6.3 Time limits for the determination of material biases

For the determination of material biases for Test Method Q141A, compacted density testing using Test Method Q141B shall be completed to a stage where the wet density has been determined within 24 hours after the end of the work shift where stabilisation works were completed for the corresponding lot.

Additionally, any moisture sub-sample is being oven dried within the same work shift as the compacted density testing for Test Method Q141B is being undertaken.

9.7 Relative moisture ratio

The relative moisture ratio of the stabilised material shall be determined in accordance with Test Method Q250.

The moisture sample locations shall be identical to the reference density testing locations for compaction testing (refer to Clause 9.6). The moisture samples shall be extracted immediately after the final wet incorporation pass by the stabiliser or reclaimer / stabiliser and prior to the addition of any additional moisture for the purposes of compaction and trimming. Following sampling, oven drying of all specimens used to determine the moisture content shall commence within the same work shift as the stabilisation works for the corresponding lot.

The relative moisture ratio shall be calculated using the individual moisture content compared to the optimum moisture content for each corresponding location (refer to Clause 9.6). As a minimum frequency, the relative moisture ratio of stabilised materials shall be assessed at each test location for compaction. The results shall be reported to the Administrator as soon as it is available.

9.8 Proof rolling

9.8.1 Proof rolling prior to early trafficking

No trafficking shall be allowed until the requirements of Clause 9.8 is carried out and no perceptible surface deformation is observed. Additional curing time may be required prior to trafficking.

9.8.2 Proof rolling of stabilised layers

The proof rolling test specified in this clause shall apply to a completed stabilised layer, unless stated otherwise in Clause 8 of Annexure MRTS07B.1. If no indication is given, the proof rolling test shall apply.

Each stabilised layer shall be tested for perceptible surface deformation by ‘proof rolling’ the stabilised layer, in the presence of the Administrator Witness Point 7. All areas of the stabilised layers shall be ‘proof rolled’, including all trafficked lanes, shoulders and other areas.

Testing shall be in accordance with Test Method Q723 unless otherwise approved by the Administrator. Testing for perceptible surface deformation is exempt from the requirement for NATA accreditation or Construction Material Testing (CMT) registration.

Where the surface of any section of a stabilised layer displays perceptible surface deformation under proof rolling, the Administrator may require the Contractor to undertake additional compliance testing to ensure that the affected section of the pavement layer complies with Clauses 8.8.1, 8.8.2 and 8.8.3. No additional payment shall be made by the Principal for such additional testing.
Where the surface of any section of a stabilised layer displays perceptible surface deformation under proof rolling, the construction of any overlying pavement layer and/or spray seal shall not proceed until the Administrator grants the Contractor permission to proceed in accordance with Clause 9.10.

The proof rolling result reported for any stabilised layer lot shall be representative of the condition of the lot immediately prior to it being covered by another pavement layer or spray seal. If the stabilised layer lot has been subjected to rainfall or moisture ingress in any way since proof rolling was undertaken, the Administrator may direct the Contractor to retest the lot to prove conformance. If the retested results do not comply with the requirements of this Technical Specification, the Contractor shall rectify the stabilised layer such that it complies with the requirements of this Technical Specification. No additional payment will be made by the Principal for any such additional efforts.

Test Method Q723 provides a method for using a loaded water tanker for proof rolling.

9.9 Ball penetration testing

For stabilised pavement layers that are to be covered by a sprayed bituminous treatment, the Contractor shall undertake ball penetration testing on the completed layer prior to undertaking the sprayed bituminous treatment.

Minimum testing frequencies for ball penetration testing shall be as specified in Clause 5.4.

In accordance with AG:PT/T251, ball penetration results shall be reported as both individual and average values.

For the average value to be adopted for lot conformance and seal design purposes, the results must be representative of a homogeneous section of pavement. Any areas represented by excessively low or high individual values should be considered for sub-lotting, and may require additional construction or testing actions before they can be incorporated into the final works. Any such works shall be undertaken by the Contractor at no cost to the Principal.

The ball penetration result reported for any stabilised layer lot shall be representative of the condition of the lot immediately prior to it being covered. If the stabilised layer lot has been subjected to rainfall or moisture ingress in any way since ball penetration testing was undertaken, the Administrator may direct the Contractor to retest the lot to prove conformance. If the retested results do not comply with the requirements of this Technical Specification, the Contractor shall rectify the stabilised layer such that it complies with the requirements of this Technical Specification. No additional payment will be made by the Principal for any such additional efforts.

9.10 Acceptance

Construction shall not proceed until the Administrator has received the results of all compliance testing for all lots constructed in the preceding three working periods, except where less than three working periods have passed since the commencement of stabilisation works. **Hold Point 7** The Contractor shall allow at least one working day for a response from the Administrator.

No layer of a pavement shall be covered by a subsequent layer of pavement or a surfacing until all testing has been completed and the layer has been presented to the Administrator for permission to proceed.
10 Supplementary requirements

The supplementary requirements given in Clause 11 of Annexure MRTS07B.1 shall apply.
Appendix A: Maximum lot sizes and minimum testing frequencies

Table A1 – Maximum lot size requirements

<table>
<thead>
<tr>
<th>Construction Activity</th>
<th>Maximum Lot Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply of unbound pavement materials for shape correction and new material to replace unsuitable material</td>
<td>5,000 tonne</td>
</tr>
<tr>
<td>Construction of insitu stabilised pavements using cement or cementitious blends</td>
<td>The area (in m²) of production, of completed stabilised layer, achieved during a single work period, provided the material is, in the opinion of the Administrator, essentially uniform.</td>
</tr>
<tr>
<td>Road roughness testing</td>
<td>500 m</td>
</tr>
</tbody>
</table>
Table A2 – Minimum material testing frequencies for additional material for shape correction and new material to replace unsuitable material

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Normal Testing Level</th>
<th>Reduced Testing Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Minimum Testing Frequency</td>
<td>Minimum No. of Tests</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimum Testing Frequency</td>
<td>Minimum No. of Tests</td>
</tr>
<tr>
<td>Source Testing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petrographic Analysis</td>
<td>ASTM C295</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet strength</td>
<td>AS 1141.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet/dry strength variation</td>
<td>AS 1141.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Degradation factor</td>
<td>Q208B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product Testing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crushed particles</td>
<td>AS 1141.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flakiness index</td>
<td>Q201</td>
<td></td>
<td></td>
</tr>
<tr>
<td>California Bearing Ratio</td>
<td>Q113A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Particle size distribution (grading)</td>
<td>Q103A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fines ratio</td>
<td>Q103A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid limit</td>
<td>Q104A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plastics limit and plasticity index</td>
<td>Q105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear shrinkage</td>
<td>Q106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfate content</td>
<td>AS 1289.4.2.1</td>
<td></td>
<td>1 per material type</td>
</tr>
<tr>
<td>Sulfate content (water)</td>
<td>AS 1289.4.2.1</td>
<td></td>
<td>1 per material type</td>
</tr>
</tbody>
</table>

For Type 1, Type 2, Type 3 or Type 4 unbound material refer to MRTS05
For RM001 material refer to MRTS35
Table A3 – Minimum construction standard testing

<table>
<thead>
<tr>
<th>Construction Activity</th>
<th>Test Method</th>
<th>Normal Testing Level</th>
<th>Reduced Testing Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Minimum Testing Frequency</td>
<td>Minimum No. of Tests</td>
</tr>
<tr>
<td>Compaction</td>
<td>Q140A</td>
<td>1 test per 500 m²</td>
<td>4 tests per lot</td>
</tr>
<tr>
<td>Relative moisture ratio</td>
<td>Q250</td>
<td>1 test per 500 m²</td>
<td>4 tests per lot</td>
</tr>
<tr>
<td>Surface spread rate of stabilising agent</td>
<td>Q719</td>
<td>1 per spreading run</td>
<td></td>
</tr>
<tr>
<td>Geometrics depth checks</td>
<td>Survey</td>
<td>a) 1 per 5 linear m within the first 20 m of each final wet incorporation pass, and</td>
<td>a) 1 per 5 m within the first 20 m of each final wet incorporation pass, and</td>
</tr>
<tr>
<td>Proof Rolling</td>
<td>Q723</td>
<td>Refer to Clause 9.8</td>
<td></td>
</tr>
<tr>
<td>Ball Penetration Testing</td>
<td>AG:PT/T251</td>
<td>5 test locations (longitudinal) per lot (determined in accordance with Test Method Q050 – random stratified (interval))</td>
<td>For stabilised pavement layer where the final surfacing (to be trafficked) is a sprayed bituminous treatment:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A4 – Minimum geometrics testing

<table>
<thead>
<tr>
<th>Construction Activity</th>
<th>Test Method</th>
<th>Normal Testing Level</th>
<th>Reduced Testing Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Minimum Testing Frequency</td>
<td>Minimum No. of Tests</td>
</tr>
<tr>
<td>Geometrics horizontal</td>
<td>Survey</td>
<td>Each 20 linear metres - measured at all shoulder edges, lane lines and other changes in grade across the pavement</td>
<td></td>
</tr>
<tr>
<td>Geometrics vertical</td>
<td>Survey</td>
<td>1 per 20 linear m</td>
<td>1 per 50 linear m</td>
</tr>
<tr>
<td>Geometrics thickness</td>
<td>Survey</td>
<td>1 measurement per joint in each wheel path in each lane. For the measurement of joints, place the straightedge on the completed layer, perpendicular to the joint. With the end of the straightedge directly over the joint, gradually move the straightedge across the joint for its full length and identify the point on the layer that produces the largest deviation under the straightedge (between two points of contact). Record the deviation at this point.</td>
<td></td>
</tr>
</tbody>
</table>
| Deviation from a straightedge | Q712 | a) **within lane**: 1 per 20 linear metres along each stabilising run, unless otherwise approved by the Administrator. Measurements shall be taken in both the transverse and longitudinal directions.
 b) **longitudinal joint**: 1 per 20 linear metres along each joint, unless otherwise approved by the Administrator.
 c) **transverse joint**: 1 measurement per joint in each wheel path in each lane.
 d) **joint to existing pavement (not constructed under the Contract)**: 1 measurement per joint in each wheel path in each lane. For all joints that tie the new works to existing pavement (not constructed under the Contract), place the straightedge on the road surface perpendicular to the joint. With the end of the straightedge directly over the joint and the other end located within the works, record the largest deviation under the straightedge (between two points of contact). | | |
| Crossfall | Survey | 1 per 20 linear metres – measured for all crossfalls shown in the design documentation at the point of testing | | |
| Surface evenness | Q708B, Q708C or Q708D | Refer to Clause 9.4.2 | | |