Technical Specification

Transport and Main Roads Specifications
MRTS232 Provision of Field Processors

October 2010
1 Introduction

1.1 Purpose

This specification defines the design, supply, installation, testing and commissioning, performance, documentation, training and maintenance requirements for the provision of a STREAMS compatible Field Processors (FP).

A Field Processor is an industrial, microprocessor-based computer suitable for use in traffic management applications hosted by the STREAMS System. They are used by the STREAMS system to provide a platform to host the distributed components of the STREAMS software that interface to the field equipment.

Field Processors are used in a number of different applications by STREAMS. The units may be mounted in cabinets on roadside plinths or within traffic signal controller cabinets. In some situations, they may be deployed within Traffic Management Centres to interface to ITS infrastructure and networks.

1.2 Scope

The Field Processor is a component of the STREAMS system which forms the basis of the Main Roads ITS Platform and Transport Management System.

2 Referenced documents

The requirements of the referenced documents listed in Table 3 of MRTS201 and Table 2 below apply to this specification. Where there are inconsistencies between this specification and referenced MRTS, the requirements specified in this specification shall take precedence.

Table 2 – Referenced documents

<table>
<thead>
<tr>
<th>Document ID</th>
<th>Document Name / Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRTS232.1</td>
<td>Annexure - Provision of Field Processors Specific Contract Requirement</td>
</tr>
<tr>
<td>MRTS201</td>
<td>General Equipment Requirements</td>
</tr>
<tr>
<td>MRTS245</td>
<td>Principal’s Telecommunications Network</td>
</tr>
<tr>
<td>AS 60529</td>
<td>Degrees of protection provided by enclosures (IP Code)</td>
</tr>
<tr>
<td>AS/NZS 4251.1</td>
<td>Electromagnetic Compatibility (EMC) – generic Emission Standard</td>
</tr>
</tbody>
</table>

3 Definition of terms

The terms defined in MRTS201 apply to this specification. Additional terminology relevant under this specification are defined in Table 3 below.

Table 3 – Definitions

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACMA</td>
<td>Australian Communications and Media Authority</td>
</tr>
<tr>
<td>BIOS</td>
<td>Basic Input Output System</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit</td>
</tr>
<tr>
<td>C Tick</td>
<td>An identification trademark registered to the government authority (ACMA) which indicates compliance with EMI (electromagnetic interference) standards. C-Tick covers only emission standards both conducted and radiated.</td>
</tr>
</tbody>
</table>
Term Definition

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIMM</td>
<td>Dual Inline Memory Module</td>
</tr>
<tr>
<td>EIA</td>
<td>Electronics Industries Association</td>
</tr>
<tr>
<td>Field Processor</td>
<td>Ruggedized field computer used to connect field devices to the ITS Network</td>
</tr>
<tr>
<td>FP</td>
<td>Field Processor</td>
</tr>
<tr>
<td>GB</td>
<td>Gigabyte</td>
</tr>
<tr>
<td>ITS</td>
<td>Intelligent Transport Systems</td>
</tr>
<tr>
<td>ITS Network</td>
<td>Principal’s Telecommunications Network in accordance with MRTS245</td>
</tr>
<tr>
<td>MB</td>
<td>Megabyte</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>PC/104</td>
<td>PC/104-Plus An embedded computer standard controlled by the PC/104 Consortium</td>
</tr>
<tr>
<td>PnP</td>
<td>Plug and Play</td>
</tr>
<tr>
<td>RAM</td>
<td>Random Access Memory</td>
</tr>
<tr>
<td>Site Identifier</td>
<td>A non-volatile memory device that stores a site identification. It connects to a dedicated serial port on the field processor.</td>
</tr>
<tr>
<td>SO DIMM</td>
<td>Small Outline - Dual Inline Memory Module</td>
</tr>
<tr>
<td>STREAMS</td>
<td>Main Roads ITS Platform and Transport Management System</td>
</tr>
<tr>
<td>UART</td>
<td>Universal Asynchronous Receiver Transmitter</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
</tr>
</tbody>
</table>

4 Quality system requirements

The quality system requirements defined in MRTS201 apply under this specification. There are no additional quality system requirements for equipment provided under this specification.

5 Functional requirements

5.1 General

The FP shall be an industrial PC and shall interface to, control and manage the operation of field systems and devices that form part of ITS applications. The scope of such functionality for each device and/or system is described in the respective MRTS.

The FP shall be located within a roadside field cabinet or within a Traffic Signal Controller cabinet.

5.2 STREAMS compatibility

The Field Processor shall be capable of operating in the STREAMS environment.

6 Equipment components

6.1 Field processor

The field processor equipment shall consist of:

- a) a FP, including memory and input / output interface cards, and
- b) a separate power supply.
6.2 **Field processor configuration**

The Contractor shall provide field processors which meet the requirements specified in this specification. In addition, the contractor shall engage Transmax Pty Ltd to confirm that the hardware is suitable for installation of the STREAMS software. The STREAMS software to be run on the field processor will be provided by Transmax Pty Ltd. The Contractor shall engage Transmax Pty Ltd for the loading and configuration of the STREAMS software onto the field processor.

6.3 **STREAMS compliance testing**

Field Processor units supplied under this contract are required to undergo STREAMS Level 1 compliance testing. The Contractor shall provide a STREAMS compatibility certificate to the Administrator for acceptance.

7 **Technical specifications**

The Field Processors shall comply with the following minimum requirements unless described otherwise in the attached Annexure MRTS232.1 *Provision of Field Processors*.

7.1 **General**

The operational requirements defined in MRTS201 shall apply to equipment provided under this specification. Additional operational requirements for equipment are described below.

The FP shall meet the following general requirements:

a) a ‘technology guarantee’ backward compatibility of future replacement products for a period of at least five years shall be provided

b) no hardware modules shall be configured using ‘Plug and Play’ (PnP). The PnP functionality shall not be provided or shall be disabled (and the module configured) by jumper/BIOS

c) all hardware shall be certified as compatible with Linux kernel 2.4.18. Supported chipsets are itemised in Appendix A ‘Supported Chipsets’

d) all hardware shall be compliant with AS/NZS 4251.1 (EN 50081.1) for C-Tick approval, and

e) fanless design.

7.2 **CPU and motherboard**

The CPU and motherboard shall meet the following requirements:

a) the processor shall be of a 32-bit architecture, compatible with and providing the performance of at least an Intel Celeron 400 MHz or as defined in the attached annexure

b) the processor board architecture shall be functionally compatible with the IBM PC/AT specification

c) the processor board shall be capable of stand-alone operation without keyboard, video, disk drive, etc. connected

d) the processor card shall be able to operate from an input voltage in the minimum range of +5 V to +24 V DC

e) the field processor power connector shall be fastened and keyed to ensure that the positive and negative inputs cannot be reversed.
7.3 System resources

The FP system resource requirements include:

a) the system shall be supplied with minimum 128MB RAM, expandable to minimum 512MB, in standard DIMM or SO-DIMM format or as defined in the attached annexure

b) the system shall be supplied with minimum 128MB solid state removable industrial grade compact flash disk and be capable of supporting up to a 2Gbyte removable compact flask disk or as defined in the attached annexure. The compact flash disk shall be bootable and have direct BIOS support

c) the system shall provide a battery-backed (or equivalent) ‘Real Time Clock’, capable of retaining accurate date/time for a minimum of 12 months without mains power. The clock shall be accurate to within 1 second per day, and

d) the system shall provide a dedicated hardware watchdog timer circuit with the ability to reset the system on timeout. It shall be possible to enable and disable the watchdog timer either by software or by jumper/BIOS, and provide a range of timeout values from 1 second to several minutes.

7.4 I/O requirements

The FP shall provide the following I/O interfaces:

a) Serial Interfaces:
 i. one EIA/RS 232C serial port for the console terminal
 ii. one EIA/RS 232C serial application port
 iii. minimum two serial ports that are individually software configurable for either EIA/RS 232C or EIA/RS 422
 iv. serial port chipset shall use a 16C550 or compatible UART
 v. all serial ports shall be capable of 300 to 115200 bits per second
 vi. base addresses and IRQs selectable by jumper/BIOS
 vii. all serial ports are to be available on the front panel by D style 9 way connectors with locking screws
 viii. termination resistors for ports in EIA/RS 422 can be jumpered, and
 ix. isolation shall be provided for ports when configured for the EIA/RS-232 and EIA/RS-422 standards. Isolators shall suppress at least 3KV and be replaceable without opening the enclosure.

b) Parallel Interface:
 i. minimum one x EPP/ECP Parallel port for the Site Identification Dongle, compatible with IBM LPT: standard
 ii. base address and IRQs selectable by jumper/BIOS, and
 iii. connections made by D Style 25 way connectors with locking screws.

c) Digital Input / Output:
i. minimum 1 x 8 Bit port. Each bit is capable of being configured as either Input or Output
ii. all Outputs to be capable of driving one standard TTL load
iii. each input capable of generating interrupts on rising/falling/both edges of each input pulse
iv. base addresses and IRQs selectable by jumper/BIOS
v. connections made by an appropriate connector mounted on the enclosure complete with locking screws.

d) Network Adaptor:
 i. 10/100 or 10/100/1000 megabit Ethernet adaptor with Linux driver. For Linux version refer Clause 7.1 General
 ii. connection made by standard Ethernet RJ45 modular connector on the enclosure, and
 iii. base addresses and IRQs selectable by jumper/BIOS
 iv. any additional Ethernet ports as defined in the attached annexure.

e) USB Interface:
 i. minimum two USB 2.0 compliant universal serial bus port
 ii. the USB connections on the enclosure shall provide a securing mechanism to overcome vibration issues relating to harsh environments. Preference will be for a connection utilising a thumb screw or similar securing device. The contractor shall provide details on the securing mechanism being proposed for the unit.

f) Display Adaptor:
 i. VGA monitor support with minimum 1MB video memory capable of 1024 x 768 resolution at 65536 colours
 ii. The display adapter is for diagnostic purposes only. An external VGA connector is not required on the enclosure, and
 iii. optionally, an additional interface to LVDS LCD display with connection to panel made by standard D-Sub 26-pin connector with securing clips.

g) Keyboard Interface:
 i. standard AT 101–key keyboard interface, with connection made by PS/2-style mini–DIN connector
 ii. keyboard interface is for diagnostic purposes only. An external keyboard connector is not required on the enclosure.

h) Mouse Interface:
 i. standard mouse interface, with connection made by PS/2-style mini–DIN connector.

7.5 Expansion bus interface/s

The Expansion Bus interface requirements include:

a) Where required, the PC/104 bus shall provide both a PC/104 bus conforming to V2.2 or later electrical and mechanical specifications and a PC/104-Plus bus conforming to V2.0 or later
electrical and mechanical specifications. All adaptor cards are to provide ‘stack-through’ bus connection (except the processor card, which may be a non stack-through ‘base’ card).

7.6 Field processor enclosure

Enclosure-related requirements for the FP shall include:

a) FPs will normally be mounted within telecommunications field cabinets that comply with MRTS201, or traffic signal controller cabinets. A space of approximately 300 x 200 x 200 mm shall be sufficient for mounting the field processor within these cabinets

b) LED indicators for the power and disk drive status shall be provided on the external face of the enclosure on the same face as the data connectors

c) All interface ports shall be clearly labelled with indelible markings

d) The FP enclosure shall be suitable for mounting on a DIN rail bracket conforming to EN50022

e) Connectors for all data interfaces and power supply shall be provided with a locking mechanism, either screwed or latching

f) Metallic construction of high quality, sealed against dust and moisture to a minimum rating of IP51, as specified in AS 60529

g) No moving parts (e.g. no fan forced cooling)

h) To meet the temperature specifications, the field processor may use the metal enclosure as a heat sink. Suitable measures shall be employed to all external the heat sinks to prevent damage/ injuries from high temperatures to other equipment/ personnel

i) The enclosure shall be constructed in a manner that will prevent entry and nesting of vermin, and

j) The enclosure shall be made of corrosion resistant material or be treated with corrosion resistant coatings to ensure it remains corrosion free under normal road-side conditions for a minimum period of 10 years.

8 Power supply unit

8.1 General

The power supply unit shall:

a) The power supply shall be a separate unit contained within its own enclosure

b) Plug pack power supplies shall not be permitted. Power supply shall be of the in-line type and have the option to be DIN rail mountable. The power supply shall not be hardwired to mains power

c) be suitable for connection to nominal 230 VAC 50 Hz earthed-neutral electrical supply, capable of correct operation between 200 V and 265 V a.c.

d) provide a regulated DC output voltage to match the nominal input voltage required by the processor board/unit, with a fastening connection compatible with that required by processor board/unit

e) be rated at 120% of the maximum power required by the FP when operating with devices connected to all ports
f) have a minimum rating of 75% efficiency at 20% full load, or 85% efficiency at 100% full load

g) incorporate (or be provided with) adequate transient protection and filtering

h) be ‘safe’ in accordance with AS/NZS 3000 and AS/NZS 3100 (e.g. no exposed 230 V contacts, etc), and

i) provide adequate power to the FP.

9 Standards compliance

The device shall pass the following tests and be certified for commercial sale:

a) Equipment shall comply with the relevant electrical safety requirements specified in AS/NZS 3100. The equipment shall not suffer damage if any of the terminations are open circuited, short circuited or disconnected while energised

b) Ethernet ports compliant with Institute of Electrical and Electronics Engineers standard IEEE 802.3

c) Serial ports compliant with Electronics Industries Association (EIA) standard RS-232-C and/or RS 422 as appropriate

d) C-Tick compliance in accordance with AS/NZS 4251.1 (EN 50081.1).

10 Service, warranty, guarantee and repair

Each Field Processor supplied shall include, as a minimum, a 12 month parts-and-labour warranty (return to base) from the date of delivery.

Spare or replacement components (to the board level) shall be available for purchase from the offerer for a period of at least 12 months following the warranty period (four years is desired).

The supplier shall provide a repair service that allows for FP repairs to be completed within four weeks from delivery to the supplier.

11 Packaging and delivery

The systems shall be supplied fully assembled and packaged individually for shipping.

12 Mechanical and physical requirements

12.1 Environmental conditions

The environmental condition requirements defined in MRTS201 apply to equipment provided under this specification except as described below:

a) The field processor shall be capable of continuous operation in field cabinets where the ambient temperature is in the range -10 to +80°C and humidity is in the range 0-90% (non-condensing), and

b) The power supply for the field processor shall be capable of continuous operation in field cabinets where the ambient temperature, as a minimum, is in the range -10 to +65°C and humidity is in the range 0-90% (non-condensing).
13 **Installation requirements**

The installation requirements defined in MRTS201 and the Annexure MRTS232.1 apply to equipment provided under this specification.

In addition, the FP and power supply shall be suitable for DIN rail mounting within a telecommunications field cabinets that comply with MRTS201, or traffic signal controller cabinets.

14 **Electrical**

The electrical requirements defined in MRTS201 and the Annexure MRTS232.1 apply to equipment provided under this specification.

15 **Testing and commissioning**

The testing and commissioning requirements defined in MRTS201 and the Annexure MRTS232.1 apply to equipment provided under this specification.

16 **Documentation**

The documentation requirements defined in MRTS201 and the Annexure MRTS232.1 apply to equipment provided under this specification.

In addition, the following documents shall be provided to the Administrator and Transmax Pty Ltd prior to obtaining the STREAMS Compliance certificate:

- an electronic copy of engineering hardware documentation
- an electronic copy of Technical and User Manuals, and
- an electronic copy of all certification documentation.

17 **Training**

The training requirements defined in MRTS201 and the Annexure MRTS232.1 apply to equipment provided under this specification.

18 **Maintenance**

The maintenance requirements defined in MRTS201 and the Annexure MRTS232.1 apply to equipment provided under this specification.

19 **Handover**

The handover requirements defined in MRTS201 and the Annexure MRTS232.1 apply to equipment provided under this specification.
Appendix

Supported Chipsets

This appendix lists the specific device chipsets certified as supported by the STREAMS field processor software package.

A.1. Network adapter chipsets

The network adapter chipsets currently certified to work with STREAMS are:

- Intel Pro/100 i82557-i82559
- Davicom DM9801,DM9802,DM9802A
- National Semi DP8381x
- SMC SMC91xxx
- AMD LANCE 7990,79C960,79C961,NE1500,NE2100
- Realtek RTL8129,RTL8139

A.2 Serial adapter chipsets

The serial adapter chipset shall use a 16C550 or compatible UART.