Contents

1 Introduction ... 1

2 Definition of terms ... 1

3 Reference documents ... 2

3.1 Regulations, codes, standards – order of precedence .. 3

3.2 Quality system requirements ... 4

4 General requirements ... 6

4.1 Technical requirements ... 6

4.2 Operational requirements ... 6

4.3 Environmental conditions ... 6

4.4 Cable type ... 6

4.5 Cable construction ... 6

5 Installation methods ... 8

5.1 Aerial ... 8

5.2 Underground ... 8

5.3 Surface ... 9

6 Installation requirements .. 9

6.1 Pre-delivery tests .. 9

6.2 Post-delivery tests ... 9

6.3 Underground cable installation .. 10

6.3.1 Tunnels ... 10

6.4 Underground conduit pathways .. 10

6.5 Cable hauling practices ... 11

6.5.1 Conduits .. 11

6.5.2 Lubricants ... 11

6.5.3 Hauling tension ... 11

6.5.4 Minimum bend radius ... 11

6.5.5 Identification and marking .. 11

6.5.6 Storage .. 12

6.6 Installation .. 12

6.6.1 General .. 12

6.6.2 Cable joints .. 13

6.6.3 Installation procedure .. 13

6.6.4 Conduit entries to enclosures and facilities ... 14

6.6.5 Identification labelling and marking ... 14

7 Fibre optic cable ... 14

7.1 Reliability and life cycle ... 14

7.2 General ... 15

7.3 Drawn, fibre optic cables .. 15

7.3.1 General ... 15

7.3.2 Drawn, Single Mode Optical Fibre cable .. 16

7.4 Blown fibre systems .. 16

7.5 Fibre optic cable joints, splices, terminations, patch panels and patch leads 16
1 Introduction

This Technical Specification defines the design, supply, installation, testing and commissioning, performance, documentation, training and maintenance requirements for telecommunications cables.

Telecommunications cables are used to transmit data, video and voice signals as an integral part of the Principal’s telecommunication network that is described more fully in MRTS245 Principal’s Telecommunications Network and the Contract. This Technical Specification applies to telecommunications cables with metallic cores and/or optical fibre cores.

This Technical Specification shall be read in conjunction with MRTS01 Introduction to Technical Specification, MRTS50 Specific Quality System Requirements and other Technical Specifications as appropriate.

This Technical Specification forms part of the Transport and Main Roads Specifications Manual.

2 Definition of terms

The terms defined in Clause 2 of MRTS01 Introduction to Technical Specifications and MRTS201 General Equipment Requirements apply to this Technical Specification. Additional terminology relevant under this Specification are defined in Table 2 following.

Table 2 – Definitions

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFSL</td>
<td>Above Finished Surface Level</td>
</tr>
<tr>
<td>BFSL</td>
<td>Below Finished Surface Level</td>
</tr>
<tr>
<td>Conduit</td>
<td>Parts of a closed wiring system used to enclose cables in an electrical or telecommunications installation, which allows the cables to be drawn in or replaced</td>
</tr>
<tr>
<td>CWDM</td>
<td>Coarse Wave Division Multiplexing</td>
</tr>
<tr>
<td>Drawn cable</td>
<td>Cable that is drawn under tension, rather than blown by compressed air</td>
</tr>
<tr>
<td>ELV</td>
<td>Extra Low Voltage maximum 50 V AC or 120 V ripple free DC</td>
</tr>
<tr>
<td>FOBOT</td>
<td>Fibre Optic Break out Termination enclosure</td>
</tr>
<tr>
<td>GRP / FRP</td>
<td>Glass Reinforced Plastic / Fibreglass Reinforced Plastic</td>
</tr>
<tr>
<td>IP</td>
<td>Ingress Protection</td>
</tr>
<tr>
<td>Low Voltage</td>
<td>Exceeding extra Low Voltage but not exceeding 1000 V AC or 1500 V DC</td>
</tr>
<tr>
<td>LSPM</td>
<td>Light Source Power Meter</td>
</tr>
<tr>
<td>LSZH</td>
<td>Low Smoke Zero Halogen</td>
</tr>
<tr>
<td>MFD</td>
<td>Mode Field Diameter</td>
</tr>
<tr>
<td>OTDR</td>
<td>Optical Time Domain Reflectometer</td>
</tr>
<tr>
<td>Pit</td>
<td>A wiring enclosure used to provide space for placing and joining cables, pulling cables, performing an operation on cables or for the inclusion of other equipment</td>
</tr>
<tr>
<td>SMOF</td>
<td>Single Mode Optical Fibre</td>
</tr>
<tr>
<td>TDR</td>
<td>Time Domain Reflectometer</td>
</tr>
<tr>
<td>VIP</td>
<td>Video Inspection Probe</td>
</tr>
</tbody>
</table>
3 Reference documents

The requirements of the referenced documents listed in Table 3 of MRTS201 General Equipment Requirements and Table 3 following apply to work under this Technical Specification. Where there are inconsistencies between this Technical Specification and referenced MRTS (including those referenced in MRTS201), the requirements specified in this Technical Specification shall take precedence.

Table 3 – Referenced documents

<table>
<thead>
<tr>
<th>Document ID</th>
<th>Document name / Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI/SCTE 50</td>
<td>Test procedure for measuring regularity of impedance of coaxial cable</td>
</tr>
<tr>
<td>AS1049.1</td>
<td>Telecommunication cables – Insulation sheath and jacket – Materials</td>
</tr>
<tr>
<td>AS/CA S008</td>
<td>Requirements for authorised products</td>
</tr>
<tr>
<td>AS/CA S009</td>
<td>Installation requirements for customer cabling (Wiring Rules)</td>
</tr>
<tr>
<td>MRTS01</td>
<td>Introduction to Technical Specifications</td>
</tr>
<tr>
<td>MRTS50</td>
<td>Specific Quality System Requirements</td>
</tr>
<tr>
<td>MRTS201</td>
<td>General Equipment Requirements</td>
</tr>
<tr>
<td>MRS245</td>
<td>Principal's Telecommunications Network</td>
</tr>
<tr>
<td>MRTS91</td>
<td>Conduits and Pits</td>
</tr>
<tr>
<td>AS/NZS 1367</td>
<td>Coaxial cable and optical fibre systems for the radio frequency (RF) distribution of analogue and digital television and sound signals in single and multiple dwelling installations</td>
</tr>
<tr>
<td>AS/NZS 14763.3</td>
<td>Telecommunications installations – Implementation and operation of customer premises cabling – Testing of optical fibre cabling</td>
</tr>
<tr>
<td>AS/NZS 1660.1</td>
<td>Test methods for electrical cables, cords and conductors – conductors and metallic components</td>
</tr>
<tr>
<td>AS/NZS 1660.5.2</td>
<td>Test methods for electric cables, cords and conductors</td>
</tr>
<tr>
<td>AS/NZS 1768</td>
<td>Lightning protection</td>
</tr>
<tr>
<td>AS/NZS 2053.1</td>
<td>Conduits and fittings for electrical installations – General requirements</td>
</tr>
<tr>
<td>AS/NZS 3000</td>
<td>Electrical installations (known as the Australian/New Zealand Wiring Rules)</td>
</tr>
<tr>
<td>AS/NZS 3080</td>
<td>Information technology – Generic cabling for customer premises</td>
</tr>
<tr>
<td>AS/NZS 3084</td>
<td>Telecommunications installations – Telecommunications pathways and spaces for commercial buildings</td>
</tr>
<tr>
<td>AS/NZS 3085.1</td>
<td>Telecommunications installations – Administration of communications cabling systems – Basic requirements</td>
</tr>
<tr>
<td>AS/NZS 24702</td>
<td>Telecommunications installations – Generic cabling – Industrial premises</td>
</tr>
</tbody>
</table>
3.1 Regulations, codes, standards – order of precedence

All relevant regulations, codes and standards shall form part of the fibre optic cabling works for compliance of the cabling system and the Contractor including, but not limited to, and in order of precedence, the following:

- *Telecommunications Act 1997*
- Australian Communications and Media Authority (ACMA) requirements
 - AS/CA S008 Requirements for customer cabling products
 - AS/CA S009 Installation requirements for customer cabling (Wiring rules)
- AS/NZS 3000:2007 Wiring Rules
- Building Code of Australia
- Queensland Workplace Health & Safety Acts and Regulations
• Australian Information and Communications Technology (ICT) cabling and related standards:
 − AS/NZS 3080 Telecommunications installations – Generic cabling for commercial premises
 − AS/NZS 3084 Telecommunications installations – Telecommunications pathways and spaces for commercial buildings
 − AS/NZS 3085.1 Telecommunications installations – Administration of communications cabling systems – Part 1: Basic requirements
 − AS/NZS 14763.3 Telecommunications installations - Implementation and operation of customer premises cabling – Part 3: Acceptance testing of optical fibre cabling
 − AS/NZS IEC 60825.1 Safety of laser products – Equipment classification and requirements
 − AS/NZS IEC 60825.14 Safety of laser products – A user’s guide
 − AS/NZS IEC 60825.2 Safety of laser products – Safety of optical fibre communication systems (OFCS)
 − HB29 Communications Cabling Manual – Module 2: Communications cabling handbook
 − HB243 Communications Cabling Manual – Module 1: Australian regulatory arrangements
• cabling systems manufacturers installation requirements
• operator certificates, tickets and licences required for the machinery, apparatus, plant, tools and so on to be used or operated.

Conflicting information shall be governed by reference to the latest editions of the relative documents. All conflicts shall be resolved with the Administrator.

3.2 Quality system requirements

The quality system requirements defined in MRTS201 apply to this Technical Specification. Additional quality requirements relevant to this Technical Specification are defined in Table 3.2 following.

Table 3.2 – Hold Points and Witness Points

<table>
<thead>
<tr>
<th>Clause</th>
<th>Hold Point</th>
<th>Witness Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4</td>
<td>1. Cable type – optical fibre type shall be OS2</td>
<td>Post-delivery tests – Optical fibre cables shall be tested on the drum prior to hauling</td>
</tr>
<tr>
<td>6.2</td>
<td></td>
<td>Post-delivery tests – Optical fibre cables shall be tested on the drum prior to hauling</td>
</tr>
<tr>
<td>6.4</td>
<td>Underground cable installation – Optical fibre cables shall be minimum 500 mm BFSL</td>
<td>Underground cable installation – Optical fibre cables shall be minimum 500 mm BFSL</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Lubricants – only polymer based lubricants shall be used</td>
<td>Lubricants – only polymer based lubricants shall be used</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Hauling tension – stated hauling tensions shall be adhered to</td>
<td>Hauling tension – stated hauling tensions shall be adhered to</td>
</tr>
<tr>
<td>Clause</td>
<td>Hold Point</td>
<td>Witness Point</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>---------------</td>
</tr>
<tr>
<td>6.5.5</td>
<td>2. Identification and marking – optical fibre cables shall be marked and identified as specified</td>
<td>Installation general – Cabling shall be installed as specified</td>
</tr>
<tr>
<td>6.6.1</td>
<td>Installation Procedure – Contractor-supplied procedures shall be approved</td>
<td>Installation general – Cabling shall be installed as specified</td>
</tr>
<tr>
<td>6.6.3</td>
<td>The Contractor shall supply five spare cable bushings of each type used in the conduit seal device to enable future cabling installations through the installed duct plug</td>
<td>Installation Procedure – Contractor-supplied procedures shall be approved</td>
</tr>
<tr>
<td>6.6.5</td>
<td>Identification marking and labelling – Installed cables shall be labelled as specified</td>
<td>Installation Procedure – Contractor-supplied procedures shall be approved</td>
</tr>
<tr>
<td>7.3.1</td>
<td>3. Drawn, fibre optic cables – optic fibre cables shall be constructed as specified</td>
<td>Installation Procedure – Contractor-supplied procedures shall be approved</td>
</tr>
<tr>
<td>7.4</td>
<td>4. Blown fibre systems – shall be approved by the Administrator prior to installation</td>
<td>Installation Procedure – Contractor-supplied procedures shall be approved</td>
</tr>
<tr>
<td>7.5.1</td>
<td>5. Joint enclosures – fibre optic termination enclosures shall be pre-approved by the Administrator prior to installation</td>
<td>Installation Procedure – Contractor-supplied procedures shall be approved</td>
</tr>
<tr>
<td>7.5.3</td>
<td>Terminations – optical fibre terminations shall meet the requirements of the Specification</td>
<td>Installation Procedure – Contractor-supplied procedures shall be approved</td>
</tr>
<tr>
<td>7.5.4</td>
<td>Patch panel – shall be pre-approved by the Administrator</td>
<td>Installation Procedure – Contractor-supplied procedures shall be approved</td>
</tr>
<tr>
<td>7.6.4</td>
<td>Visual inspection of terminated optical fibre – fibre optic terminations shall be visually inspected with a video inspection probe</td>
<td>Installation Procedure – Contractor-supplied procedures shall be approved</td>
</tr>
<tr>
<td>7.6.5</td>
<td>Test result data requirements – test results shall meet the requirements of the Technical Specification</td>
<td>Installation Procedure – Contractor-supplied procedures shall be approved</td>
</tr>
<tr>
<td>7.6.11</td>
<td>6. Test result acceptance – supplied test results shall be reviewed against the specified requirements</td>
<td>Installation Procedure – Contractor-supplied procedures shall be approved</td>
</tr>
<tr>
<td>8.3</td>
<td>Twisted pair installation requirements – the specified requirements for twisted pair cable installation shall be adhered to</td>
<td>Installation Procedure – Contractor-supplied procedures shall be approved</td>
</tr>
<tr>
<td>8.5</td>
<td>Testing of twisted pair cables – twisted pair cables shall be tested in accordance with the specified requirements</td>
<td>Installation Procedure – Contractor-supplied procedures shall be approved</td>
</tr>
<tr>
<td>9.2</td>
<td>7. Coaxial cable electrical parameters – coaxial cables shall be constructed to meet the requirements of the installation</td>
<td>Installation Procedure – Contractor-supplied procedures shall be approved</td>
</tr>
<tr>
<td>9.4</td>
<td>Testing of coaxial cables – coaxial cables shall be tested as specified</td>
<td>Installation Procedure – Contractor-supplied procedures shall be approved</td>
</tr>
</tbody>
</table>
4 General requirements

4.1 Technical requirements
Materials and equipment provided under this Technical Specification shall comply with requirements of AS/CA S008. Materials and equipment installed under this specification shall comply with requirements of AS/CA S009.
Specific installation requirements shall meet the electrical requirements of AS/NZS 3000.

4.2 Operational requirements
The operational requirements specified in MRTS201 apply to materials and work provided under this Technical Specification.

4.3 Environmental conditions
The environmental conditions specified in MRTS201 apply to work under this Technical Specification. Additional environmental conditions for equipment provided under this Technical Specification are described following.
Cables shall be suitable for installation within the environment intended. Cables installed in outdoor conditions shall be suitable for the purpose and comply with the requirements of AS/CA S008.
Underground conduits and associated infrastructure shall be provided in accordance with MRTS91.

4.4 Cable type
All installed fibre optic cable shall be optical single mode 2 (OS2) G652.D (low or zero water peak). Multimode cable shall not be used. **Hold Point 1**

4.5 Cable construction
All communications cabling shall comply with AS/CA S008. Unless otherwise specified by the Administrator, fibre optic cable shall have a composite layered construction based on (refer to Figure 4.5):
 a) Low Smoke Zero Halogen (LSZH) outer jacket (refer to Clause 6.3.1)
 b) primary nylon sheath
 c) primary polyethylene outer jacket
 d) non-metallic armoured rodent barrier (not applicable to aerial cable)
 e) secondary Nylon™ jacket for termite barrier (not applicable to aerial cable and tunnel cable)
 f) secondary polyethylene inner sheath
 g) dry water blocking tape or threads surrounding fibre tubes and fillers
 h) have solid polyethylene fillers
 i) maximum of 12 fibres per loose tube
 j) Glass Reinforced Plastic / Fibreglass Reinforced Plastic (GRP/FRP) central strength member, and
 k) rip cord.

No metal shall be used in construction of the fibre optic cable.
A non-metallic rodent resistant construction cable shall be specified on a project specific basis where rodent protection is an identified risk mitigation strategy. The Contractor shall consult with the Administrator as to the selection of the type of armoured rodent resistant layer required. The types of rodent protection layers referred to in Section 4.5 d) previously that shall be considered are:

1. solid spiral glass rod based protection layer
2. longitudinal glass rovings raw fibre glass woven matting or glass yarn based protection layer, and
3. other glass protection layer as approved by the Department of Transport and Main Roads.

All rodent approved cable not already type approved shall be submitted to an independent rodent testing facility at no cost to the Department of Transport and Main Roads. Any subsequent test report shall be submitted to the Administrator for approval. Such testing shall be conducted at an independent test centre utilising local rodents, in particular the Australian Black Bush Rat.

The preferred testing centre is:

Queensland Government
Natural Resources and Mines
Robert Wicks Pest Animal Research Centre
Inglewood QLD 4387

To maximise the life of communications cable such as optic fibre, the department needs to ensure that the cables are adequately protected against rodents. Following is an image of a cable that was significantly damaged by rodents, which was not of an armoured cable type. The cable looks like it is burned but the black edges you can see are the exposed inner sheaths and the lighter coloured bundles of 12 core optic fibre.

Therefore the department needs to specify armoured rodent protection on fibre optic cables to prevent this type of damage in the future and extend the life of a fibre cable installation and reduce maintenance costs (and associated operational downtime) to repair damaged cable.

Tight buffered construction cables shall not be installed in an outdoor environment.
The following diagram details the typical construction layers of a loose tube Single Mode Optical Fibre (SMOF) cable which can house up to 72 fibre cores (example). Greater numbers of fibre cores will change require additional loose tubes.

Figure 4.5 – Typical fibre optic cable construction

5 Installation methods

5.1 Aerial

Aerial supported or self-supporting fibre optic cables shall not be installed without prior approval in writing from the Administrator.

Where aerial fibre optic cabling is approved, the cable and installation practices shall comply with the requirements of AS/CA S008 and AS/CA S009. Approval in writing from the Administrator shall be sought prior to the commencement of the installation.

5.2 Underground

Fibre optic cables installed underground shall be enclosed in a suitable complaint conduit system meeting the requirements of MRTS91.

The fibre optic cable shall be installed in the communications conduits, unless prior written permission is granted by the department for installation in electrical conduits.

The department prefers to install fibre optic cable within dedicated communications conveyances (white communications conduits). It is noted that AS/CA S009 allows for the installation of optic fibre cable within electrical conduits however, the department want to further reduce the risk of any accidental exposure of departmental communications maintenance personnel to electrical hazards.

Direct buried fibre optic cables shall only be installed if approved by the Administrator in writing.
5.3 Surface

Fibre optic cables installed onto the surface of a structure shall be enclosed in a PVC or metallic conduit meeting the requirements of AS/CA S008. The conduit shall be coloured white and labelled communications in accordance with the requirements of AS/CA S008. Where fibre optic cables are installed in an area accessible to the public the conduit shall be metallic construction to a height of 2400 mm Above Finished Surface Level (AFSL) or be enclosed in a hat section of 1.6 mm thick hot dip galvanised sheet metal.

No fibre optic cable shall be installed on a surface without an approved enclosure.

Optic fibre cable installed within communications cable risers affixed to Intelligent Transport Systems (ITS) gantries, structures and other applications as approved by the Administrator shall be military specification-compliant with particular reference to general cable durability and flexibility under TIA/EIA 455-104A and bending radius (refer to Clause 6.5.4). The departmental project representative shall be consulted for further direction should this requirement not be satisfied.

In some situations, the department needs to install fibre optic cables with bends which are much tighter than what can be provided for by standard commercial cables. Military specification cables are able to meet this requirement apart from being generally much more rugged and durable.

6 Installation requirements

The installation requirements specified in MRTS201 apply to work under this Technical Specification. Additional installation requirements for equipment provided under this Technical Specification are described following.

6.1 Pre-delivery tests

All fibre optic cables shall be tested on the drum prior to delivery to site. Testing shall consist of an Optical Time Domain Reflectometer (OTDR) trace on all cores in both directions at one wavelength (1310 or 1550 nm). For approved Coarse Wave Division Multiplexing (CWDM) project designs, additional wavelength of 1383 nm shall be tested). Any tested cable showing any anomalies on any core shall be rejected. Traces shall be stored and an electronic copy submitted to the Administrator.

In some instances, SMOF cables may need to be used for accepting additional disparate services. This may involve the use of CWDM to effectively increase the fibre core count and hence useable capacity. In these cases, we need the wavelength of 1383 nm to be included in the testing of the cable.

6.2 Post-delivery tests

Upon delivery to site and prior to physical installation, all fibre optic cables shall be tested. Testing shall consist of an OTDR trace on all cores in one direction at one wavelength. Tested cable showing any anomalies on any core shall be rejected. Traces shall be stored and an electronic copy submitted to the Administrator. Witness Point
6.3 Underground cable installation

AS/CA S008 outdoor rated fibre optic cables shall be installed into underground conduits using the following methodologies for each cable type. A minimum 6 mm polypropylene draw rope shall be used to haul all fibre optic cables:

- loose tube construction – Attach a Katimex Part# 108170, or approved equivalent, cable grip stocking to the cable
- after completion of cable hauling and prior to commencement of fibre termination, the first 5.0 m of cable shall be removed.

For all fibre optic cable installations exceeding 500 mm, a Katimex Part# 107183, or approved equivalent, line swivel shall be used at the point of attachment to all cables.

6.3.1 Tunnels

In addition to the general requirements of Clause 4.5, all new cables installed within new tunnels shall be specified to be of the LSZH type outer jacket to minimise smoke toxicity in the event of a tunnel fire.

For existing tunnels, all new cables shall be of the LSZH type outer jacket.

A non-metallic armoured construction cable shall be specified on a project specific basis where rodent protection is an identified risk mitigation strategy within the tunnels (refer Clause 4.5).

The LSZH cable shall have been tested to and comply with AS/ANZ 1660.5.2 with particular reference to smoke emission characteristics of the cable.

Should a project be unable to comply with the LSZH requirement for cabling in tunnels, the Administrator shall be consulted for further direction which is based on:

a) the project shall seek formal advice from a suitably qualified and experienced Registered Professional Engineer of Queensland (RPEQ) fire engineer detailing the effect of the specified amount of non-LSZH cable installed on any such fire event in the relevant tunnel, and

b) that the departmental project shall conduct a risk assessment which amongst other relevant whole of life considerations, takes input from formal advice received from the fire engineer as well as takes into account the maintenance standard practice of installing LSZH cables in tunnels.

The department wants to ensure that any new cables installed within tunnels are LSZH type. These cables have a LSZH jacket which, when burnt, emit reduced smoke and no halogen. Many departmental tunnels are used as emergency egress during a fire and minimising the potential smoke toxicity contributing factors where possible during design will help maximise life safety outcomes.

6.4 Underground conduit pathways

Underground conduit pathways shall comply with the requirements of AS/CA S009 and MRTS91. The minimum depth of cover for a telecommunications conduit shall be 500 mm Below Finished Surface Level (BFSL). Witness Point.
6.5 Cable hauling practices

6.5.1 Conduits

Ensure that all conduits are clean and free of debris.

6.5.2 Lubricants

Apply a suitable polymer based cable lubricant. Petroleum or wax based lubricant shall not be used. [Witness Point]

6.5.3 Hauling tension

The maximum hauling tension to be applied to fibre optic cables shall be:

 a) tight buffered construction – 220N/22 kg or the cable manufacturer’s maximum, whichever is the lesser value, and
 b) loose tube construction – 2750N/275 kg or the cable manufacturer’s maximum, whichever is the lesser value.

The installer shall use a mechanical hauling device for all cable installations exceeding 500 m. The mechanical hauling device shall have an adjustable tension setting suitable for the cable being installed. [Witness Point]

6.5.4 Minimum bend radius

The following minimum bend radii shall be applied to the installation of fibre optic cable under this Technical Specification:

 • Tight buffered construction – 20 times the outside diameter of the cable during hauling. When secured in a static environment, the bend radius shall be no less than 10 times the outside diameter.
 • Loose tube construction – 30 times the outside diameter of the cable during hauling. When secured in a static environment, the bend radius shall be no less than 20 times the outside diameter.
 • MIL spec cable construction – 2.5 times the outside diameter of the cable during hauling or in a static environment.

6.5.5 Identification and marking

Unless otherwise specified, the cable sheath shall be marked indelibly in a contrasting colour with sequential metre markings at one metre intervals. The metre markings need not start at zero. The starting and finishing metre markings shall be recorded on the drum flange. [Hold Point 2]

The following information shall be printed or embossed on the outer sheath at regular intervals not exceeding 1 m:

 • manufacturer’s name or identifying initials
 • year of manufacture
 • type of cable
 • number of cores (for optic fibre)
 • type of fibre cable (for example, SMOF G652.d)
Better identification of cables will allow site inspectors to readily discern the nature of cable configurations in existing installations through cable labelling.

6.5.6 Storage

The Contractor shall take all reasonable care when storing metallic communications cable, fibre optic cable, fibre optic duct and accessories. These shall be stored in a safe, dry and secure location until required.

Fibre optic cable drums shall not be transported on their flat sides. All drums shall be transported upright to prevent compression damage.

Cables or cable drums shall not be stored directly on the ground.

Cables, fibre optic duct and accessories shall be protected from damage and solar radiation.

6.6 Installation

6.6.1 General

Witness Point

Cables shall be bundled and drawn in together using cable lubricant as required. Cables shall lie loose in the conduit and be free from residual tension, kinks or twists. Where two or more cables share a duct, they shall be installed such that:

- they are not wrapped about each other, and
- any single cable can be withdrawn without disturbing the other cable(s).

Draw ropes used to draw in cables and/or fibre optic ducts shall be replaced as the cables and/or ducts are installed.

Conduits shall not be filled beyond 60 per cent capacity.

Additional lengths of neatly coiled cable slack shall be provisioned under the following conditions:

- pits adjacent to connecting equipment or joints – six metres
- at the nearest pit to every 200 metres – 10 metres
- at all pits comprising a road crossing – 20 metres, and
- at the ends of each cable – 10 metres.
New pits shall be suitably sized to accommodate the required slack cable. Existing pit(s) that have insufficient spare capacity to support the required cable slack lengths shall be immediately reported to the Administrator for a determination on whether a cable slack requirement can be waived at that particular pit(s).

Sufficient cable slack provisions allow the department to future proof for the purpose of enhancements requiring connection to previous cabling installations at the areas listed. If sufficient cable slack is not available, complete new sections of cable are required to be drawn and this is costly as joints will introduce losses and, as the number increases, will degrade the reliability of the communications.

Should the installed cable bending radius prevent installation of the required slack provisions under this clause, written approval to waive or to provide further direction from the Administrator shall be sought as soon as the project becomes aware of the non-compliance.

Ends of cables that are not immediately terminated shall be sealed to prevent ingress of moisture and other foreign material. Ends of conduits and fibre optics ducts shall be sealed to prevent ingress of moisture and other foreign material in accordance with MRTS91. The Contractor shall rectify and/or replace any seals on cables, fibre optic ducts, and/or conduits that are disturbed or damaged, including cable that remain uninstalled on its drum.

The Contractor shall replace any damaged materials.

6.6.2 Cable joints

Cables shall be ordered in appropriate lengths to minimise the number of joints. A jointing plan shall be prepared and presented to the Administrator for approval prior to the purchase of any fibre optic cable.

All cable joints shall be enclosed in a protective housing to avoid damage and prevent the ingress of moisture and other foreign materials. The housing shall ensure that no stress is imparted to the joint and any exposed cable cores. The joint enclosure shall be rated to IP 68.

All cable entries to the joint housing shall be sealed to prevent the ingress of moisture and other foreign materials.

For fibre optic cable, mechanical joints or splices shall not to be used.

6.6.3 Installation procedure

The Contractor shall prepare and submit to the Administrator an installation procedure for each type of cable. The installation procedures shall be included in the Contractor's construction plan.

Witness Point

The installation procedures shall include but not be limited to detailing the materials and methods to be used for:

a) fibre optic duct (where used)

b) de-watering conduits if required

c) draw rope replacement in conduits

d) storage of materials on and off site
e) cable installation
f) cable joints
g) cable terminations
h) disposal of excess materials
i) product identification and traceability
j) inspection and test plans, and
k) confirmation that conduit is able to accommodate the cables.

6.6.4 Conduit entries to enclosures and facilities

All telecommunications conduits entering a structure or roadside enclosure shall be sealed, conduits containing cabling shall be effectively sealed with a multi-port sealing device (Quadplex™ Duct Plug) or approved equal, spare entry points in the conduit seal shall be sealed with equivalent blanking plugs matching the sealing device. On completion of the installation, the Contractor shall supply five spare cable bushings of each type used in the conduit seal device to enable future cabling installations through the installed duct plug. **Witness Point**

6.6.5 Identification labelling and marking

All cables shall be tagged permanently at both ends with sufficient information to identify the cable uniquely and describe the termination point of the opposite end of the cable. Identification methods shall be in accordance with AS 3085.1.

All installed fibre optic cables shall be labelled at each accessible location (termination enclosure/pit) with a durable label detailing the departmental nominated cable identifier and the source/destination information. The label shall be the functional equivalent of a TNA Industries CMA86 label. The information shall be permanently embossed/etched onto the surface of the label. For underground installations, a label shall be placed on the cable at each point of entry/exit. The label at these locations shall logically indicate the source of the cable in each direction.

All termination enclosures shall be uniquely labelled as per the departmental labelling standard for the project. All terminated cores shall be uniquely labelled/numbered. All unterminated cores within a tube shall be identified by tube number and core colour on the ‘as built’ documentation. All unused tubes containing spare fibre cores shall be labelled with the source/destination information and cable ID. **Witness Point**

7 Fibre optic cable

7.1 Reliability and life cycle

Unless otherwise specified, the design service life of cables shall be 25 years in the environmental conditions specified.
7.2 General

In addition to the general requirements described, the following requirements apply to fibre optic cables unless specified in the project documentation.

Maximum optical attenuation of all fibre optic cables shall be in accordance with Section 9.4.2.1 of AS 3080.

The minimum optical performance requirements for fibre optic cables are listed in Table 7.3.1-A.

7.3 Drawn, fibre optic cables

7.3.1 General

SMOF cables shall be provided with a primary sacrificial polyethylene jacket (blue) 1.2 nom. Wall +/- 0.1 mm.

The secondary sheath shall be Nylon™ (blue) 0.45 nom. Wall ± 0.1 mm. The secondary sheath shall be Nylon™ (blue) and when applied as a separate sheath shall have a 0.45 nom. Wall ± 0.1 mm. Alternatively, when the Nylon™ is applied as a bonded dual layer process with polyethylene the nom. wall will be 0.25 mm, min. spot of 0.20 mm. and a minimum bond strength of 2.5 N/mm.

The minimum physical performance requirements for fibre optic cables are listed in Table 7.3.1-A.

Hold Point 3

Table 7.3.1-A – Minimum optical requirements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SMOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum attenuation (dB/km)</td>
<td>0.35</td>
</tr>
<tr>
<td>Chromatic dispersion coefficient</td>
<td>≤ 3.5ps/nm/km</td>
</tr>
<tr>
<td>Modal bandwidth</td>
<td>–</td>
</tr>
<tr>
<td>Mode Field Diameter (MFD)</td>
<td>9.2 ± 0.4 microns</td>
</tr>
</tbody>
</table>

Table 7.3.1-B – Minimum physical requirements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SMOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated tensile strength</td>
<td>1.5 kN (minimum)</td>
</tr>
<tr>
<td>Maximum crush resistance</td>
<td>2.0kN/100 mm (minimum)</td>
</tr>
<tr>
<td>Cladding non-circularity</td>
<td>≤ 2.0%</td>
</tr>
<tr>
<td>Minimum bend radius</td>
<td>≥ 10 x cable diameter ≥ 20 x cable diameter</td>
</tr>
<tr>
<td>operating temperature</td>
<td>-10°C to +70°C</td>
</tr>
<tr>
<td>Fibre identification</td>
<td>Colour coded</td>
</tr>
<tr>
<td>Water blocking (within tubes):</td>
<td>Thixotropic gel</td>
</tr>
<tr>
<td>Water blocking (within cable):</td>
<td>Dry block or thixotropic gel</td>
</tr>
</tbody>
</table>
7.3.2 Drawn, Single Mode Optical Fibre cable

SMOF cables shall comply with AS 3080, and in particular Clause 9.4.4, including tests defined in Annex B Clause B.2.3(a) and (b).

7.4 Blown fibre systems

Unless otherwise specified, blown fibre systems shall not be installed without prior written approval from the Administrator. Hold Point 4

7.5 Fibre optic cable joints, splices, terminations, patch panels and patch leads

7.5.1 Joint enclosures

All fibre optic cables shall be terminated within a suitable approved enclosure. All termination enclosures shall be approved by the Administrator prior to implementation. Hold Point 5

As a minimum, all fibre optic termination enclosures shall have the following features:

- mechanical cable restraint at the cable point of entry supporting the cable not more than 300 mm from the exposed cores/tubes
- internal mechanical restraint for the central strength member
- splice cassette with a minimum capacity of 12 heat shrink splice protection sleeves – the splice cassette will be suitably sized to prevent macro bending of the terminated cores
- wall mount/DIN rail mount enclosures shall have capacity for a minimum of 12 SC/APC couplers – the enclosures shall have sufficient space to store a minimum of 3.0 m of stripped tight buffered cores of loose tube
- 19-inch 1RU rack mount enclosures shall have capacity for a minimum of 24 SC/APC couplers – rack mountable enclosures shall have sufficient space to store a minimum of 3.0 m of stripped tight buffered cores of loose tube
- larger rack mounted enclosures shall have the capacity specified in the tender documentation
- underground joint enclosures shall be suitable for the cable size installed and be minimum IP68 rated.

Termination enclosures shall have sufficient space to allow the fibre cores free and unstressed entry to the splice cassette and to the coupler. Macro bending of the fibre cores is not acceptable.
7.5.2 Splices

All fibre optic cores shall be fusion spliced; the splicer shall be suitable for the purpose intended. Mechanical splices shall not be used. The insertion loss of each splice in the fibre optic cable shall not exceed 0.1 dB.

Pigtails for fibre core terminations shall be colour coded as per AS/CA S009 Table B7:

<table>
<thead>
<tr>
<th>Core number</th>
<th>Core colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Blue</td>
</tr>
<tr>
<td>2</td>
<td>Orange</td>
</tr>
<tr>
<td>3</td>
<td>Green</td>
</tr>
<tr>
<td>4</td>
<td>Brown</td>
</tr>
<tr>
<td>5</td>
<td>Grey</td>
</tr>
<tr>
<td>6</td>
<td>White</td>
</tr>
<tr>
<td>7</td>
<td>Red</td>
</tr>
<tr>
<td>8</td>
<td>Black</td>
</tr>
<tr>
<td>9</td>
<td>Yellow</td>
</tr>
<tr>
<td>10</td>
<td>Violet</td>
</tr>
<tr>
<td>11</td>
<td>Pink</td>
</tr>
<tr>
<td>12</td>
<td>Aqua</td>
</tr>
</tbody>
</table>

Pigtails connector end faces shall be cleaned prior to insertion into the coupler.

7.5.3 Terminations

All optical fibre cores shall be spliced with matching pigtails on a 19-inch rack-mounted, enclosed fibre-splice panel. The fly-leads shall terminate in a 19-inch rack-mounted SC/APC patch panel or other approved enclosure suitable to the terminating environment. No section of the fibre cores may be exposed outside the enclosure. **Witness Point**

The insertion loss of each mated pair of connectors shall not exceed 0.5 dB, and return loss less than 60.0 dB.

All unused or dark fibre Fibre Optic Break out Termination enclosure (FOBOT) sockets shall be fitted with termination plugs. Sufficient termination plugs shall be left within the FOBOT for all used connections.

Any unused cables shall be labelled and terminated.

7.5.4 Patch panel

Witness Point

The patch panel shall utilise standard square connector / angled polished connector (SC/APC) type connectors. The fibre-splice panel and patch panel shall be mounted within a communications field cabinet that complies with MRTS201, or a suitable indoor enclosure. Unused ports in the patch panel shall be capped to prevent the ingress of moisture and other foreign material. Fibre optic couplers/thru
adaptors shall be mounted with all keyways oriented to the bottom to prevent an accumulation of dust in the keyway.

Rack mounted fibre optic termination enclosures shall have integral horizontal and vertical cable management to assist in reducing stress on the patch leads.

7.5.5 Patch leads

Equipment shall be connected to the patch panel via flexible and resilient optic fibre patch leads designed for such purpose. Patch leads shall match the type of optic fibre core, patch panel connectors (SC/APC type) and equipment connectors (SC/APC type) and be of sufficient length to avoid tension on installed patch leads while minimising insertion losses. All fibre optic patch leads shall be of the bending loss insensitive type compliant to ITU-T G657.A2. Project specific documentation may specify duplex LC connectors for the equipment end; refer to the directions of the Administrator.

Fibre optic patch leads are a key component of communications and often are subjected to tight bends over the course of regular maintenance activities. The bend insensitive patch cable type is expected to increase physical routing flexibility for installers.

Patch leads shall have a minimum jacket diameter of 2.0 mm and be yellow in colour.

7.6 Testing and commissioning of installed Single Mode Optical Fibre cabling

7.6.1 Minimum requirements

The Contractor shall carry out all tests that can be applied to fibre optic cable installations as defined in Annex B of AS3080. These shall include, but not be limited by, Clauses B.2.2, B.2.3, B.2.3(a) and (b), B.4.3, B.4.4 and Table B1 of AS3080.

Insertion loss measurements shall be made over all complete links in both directions at 1310 nm and 1550 nm for SMOF cables. Where CWDM is a requirement of the SMOF design, the wavelength of 1383 nm shall also be included in the Insertion loss measurements.

The Contractor shall supply hard and electronic copies of the OTDR trace for each fibre core as well as tabulated results. The contractor shall provide a copy of the OTDR viewing software to the department.

The Contractor shall provide optical loss budget calculations and result summaries for all cables installed as per Appendix A of this Technical Specification.

7.6.2 Standards

Test equipment and testing procedures shall comply with AS/NZS ISO/IEC 14763.3.

Test limit data and link/loss budget calculations shall be derived from AS/NZS 3080.

A maximum link/loss calculation shall be made for each installed link as detailed in Appendix A ‘Fibre budget loss calculation and result summary’ in this Technical Specification.

7.6.3 Test configuration

Newly installed fibres shall be tested as permanent links as defined by AS/NZS 3080.
7.6.4 Visual inspection of terminated optical fibre

Fibre terminations shall be confirmed clean by visual inspection using appropriate magnifying equipment in accordance with AS/NZS 14763.3 Annex B (normative) Section B.2 prior to tests being conducted. A Video Inspection Probe (VIP) shall be utilised for the inspection. The VIP shall be capable of storing the captured image. The captured images shall be provided to the department with the handover documentation. **Witness Point**

Contaminating particles on the end faces shall be removed using suitable cleaning equipment in accordance with the manufacturer's instructions. The connector shall comply with ISO/IEC 14763-3:2006 and be tested using FiberChek2 software or approved equivalent. Any connectors exhibiting scratches or pitting within the core area of the connector face shall be replaced.

7.6.5 Test result data requirements

The following shall be provided to the department for each fibre cabling installation:

- Light Source Power Meter (LSPM). Test result data shall be provided in the native format supplied by the test equipment manufacturer (for example, Fluke Networks Linkware). Test results shall not be accepted in any text-based format. LSPM calculations performed on OTDR trace data are not acceptable.

- Optical Time Domain Reflectometer (OTDR). All traces shall be provided in the OTDR’s native format and a portable document format (PDF) printout of each trace. Where specific viewing software is required to view and analyse the trace data the Contractor shall provide a copy of the specific software with the trace data.

- Completed budget loss calculation and result summary sheet (refer Appendix A of this Technical Specification).

Detailed test results shall be provided for all cores as part of ‘As Constructed’ documentation. If fibre is to be used prior to ‘As Constructed’, documentation being available, a summary report for all cores showing a pass is required before any core is patched into service. **Witness Point**

7.6.6 Light source power meter testing requirements

The following presents the minimum testing requirements for fibre optic installations at departmental sites:

- the LSPM shall be configurable with test equipment interfaces that match the termination connectors of the completed installation

- where the LSPM test equipment interface matches the installed connector interface the calibration method shall be AS/NZS/ISO/IEC 14763.3 1-jumper method as detailed in Figure 10 of that Standard

- where the LSPM test equipment interface does not match the installed connector interface the calibration method shall be AS/NZS/ISO/IEC 14763.3 3-jumper method as detailed in Figure 9 of that Standard

- all test leads shall be certified reference leads with losses equal to those detailed in AS/NZS/ISO/IEC 14763.3 Clause 6.3.2, Table 3 – manufacturer loss results for all reference lead shall be provided to the department with the LSPM results
test shall be performed in both directions

- test results submitted with positive gain results shall not be accepted.

7.6.7 LSPM test result data requirements

The following information, as a minimum, shall be recorded for each core tested:

- project name
- site ID
- name of tester operator
- fibre ID shall match the label on the FOBOT
- fibre core being tested
- reference method
- calibration date
- reference date/time.

7.6.8 Optical Time Domain Reflectometer testing requirements

The following present the minimum testing requirements for fibre optic installations at departmental sites:

- As a minimum, the OTDR shall be a functional equivalent to the JDSU MTS-6000. The OTDR shall be suitable for the length of cable under test.
- Traces shall be performed with both launch and tail leads. Traces shall be performed in both directions under this methodology.
- Launch and tail leads for single mode installations shall be minimum 500 m in length.
- For testing of completed installations, it is acceptable for the OTDR to be utilised in ‘auto’ mode with the event table function enabled. Where the installed link is less than 250 m in length the pulse width shall be reduced to ensure that the trace is clear and that all elements of the completed installation are identifiable.
- Markers shall be placed at the base of the peak indicating the start of the link under test and the peak indicating the end of the link under test (that is, between the launch/tail leads) to define the segment under test to ensure length is as accurate as possible.
- The event parameters of the OTDR shall be set to reflect the acceptable splice/connector losses detailed in AS/NZS 3080.
- Only the final traces are required to be supplied to the Administrator.
- A two-point measurement of the link under test exclusive of ‘dead zones’ shall be made on the link under test to ensure that the installed cable has an attenuation value consistent with the manufacturer’s loss/km values contained within the product data sheet.
- Propagation delay shall be reported for all cores tested.
- Optical return loss shall be measured in accordance with AS/NZS 14763.3 Clause 10.4.
7.6.9 Optical Time Domain Reflectometer test result data requirements

The following information, as a minimum, shall be recorded for each core tested:

- project name
- date and time of test
- name of tester operator
- fibre ID shall match the label on the FOBOT
- core number
- length of fibre being tested (as identified between the markers)
- loss across the entire length (as identified between the markers)
- loss across individual events along the fibre path.

7.6.10 Test instrument requirements

All test equipment utilised on departmental projects shall comply with the following requirements:

- comply with AS/NZS ISO/IEC 14763.3
- calibrated within the last 12 months – a copy of the calibration certificate shall be provided to the department on request
- operated by a person appropriately trained and accredited by the test equipment manufacturer – a copy of the accreditation certificate shall be provided to the department on request
- setup using the manufacturer’s setup procedure prior to testing being performed – a copy of the set up procedure shall be provided to the department on request and
- equipped with test leads suitable for the fibre being tested.

7.6.11 Test result acceptance

The Contractor shall provide detailed budget loss calculations and result summary to the Administrator for acceptance. Hold Point 6

A pass result in the budget loss calculation and result summary sheet indicates:

- test equipment is within 12 months of its calibration date
- the operator is trained and accredited to operate the test instruments
- the test leads are correctly referenced
- for LSPM, the measured loss over the length of the fibre is less than the budget loss calculation for the entire length
- for OTDR, the loss across each individual component does not exceed the budget loss for that component.

Note: A ‘pass’ on the LSPM can be negated by a ‘fail’ on the OTDR. If a reported event on the OTDR exceeds the limits allowed in AS/NZS 3080 for that type of event, the tested core will be deemed to have failed.
8 Twisted pair cables

8.1 General

In addition to the general requirements described previously, the following requirements apply to twisted pair cables.

The appropriate cable shall be selected to suit the application. All installed cable shall have a minimum of two twisted pairs.

Twisted pair communication cables shall be suitable for operation in the proximity of low voltage cables. Their material, construction and installation shall comply with AS/NZS 3000.

8.2 Twisted pair electrical parameters

Twisted pair communication cables shall comply with AS3080, including all parameters for metallic cables defined in Annexes A, B and C thereof relevant to the application.

8.3 Installation requirements

Witness Point

8.3.1 Hauling tension

The maximum hauling tension to be applied to twisted pair cables shall be:

a) twisted pair cables – 110N/11 kg or the cable manufacturer’s maximum whichever is the lesser value.

8.3.2 Minimum bend radius

The following minimum bend radii shall be applied to the installation of twisted pair cables cable under this Technical Specification:

a) Unshielded twisted pair cables – four times the outside diameter of the cable during hauling. When secured in a static environment the bend radius shall be no less than 10 times the outside diameter.

b) Shielded twisted pair cables – eight times the outside diameter of the cable during hauling. When secured in a static environment the bend radius shall be no less than 20 times the outside diameter.

8.4 Terminations and patch leads

8.4.1 Joints

Twisted pair cables shall be installed in a single length, mid span joints shall not be used without prior written approval of the Administrator.

8.4.2 Terminations

All conductors shall be terminated at both ends with an 8P8C modular connector on a 19-inch rack-mounted, terminal panel. The insertion loss of each termination or intermediate joint shall not exceed the requirements of AS/NZS 3080 for the relevant category of product installed.

The termination panel and/or terminal block shall be mounted within a field cabinet that complies with MRTS201, or a suitable indoor enclosure. The patch panel shall be sealed to prevent the ingress of moisture and other foreign material.
Any unused cables shall be left unterminated but sealed at both ends to prevent ingress of moisture and other foreign material.

8.4.3 Patch leads

Patch leads shall match the category type, use connectors compatible with the cable terminations and be of sufficient length to avoid tension on installed patch leads.

All twisted-pair patch leads used for Ethernet communications shall be coloured as shown in Table 8.4.3.

<table>
<thead>
<tr>
<th>Link type</th>
<th>Colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard, straight-through patch</td>
<td>Blue</td>
</tr>
<tr>
<td>Cross-over cables (TIA/EIA-568A to TIA/EIA-568B terminated)</td>
<td>Red</td>
</tr>
<tr>
<td>Communications uplinks (such as from switch to point of access)</td>
<td>Yellow</td>
</tr>
<tr>
<td>Critical communications links (such as switch to server, or switch to switch)</td>
<td>Green</td>
</tr>
</tbody>
</table>

8.5 Testing of twisted pair cables

All twisted pair links shall be tested as per the performance requirements of AS/NZS 3080 including Addendum 2 for the class of permanent link installed. **Witness Point**

8.5.1 Test configuration

Newly installed fibres shall be tested as permanent links as defined by AS/NZS 3080.

Testing shall be carried out with a verified Level III or Level IV cable analyser capable of providing Time Domain Reflectometer (TDR) results for all terminated copper pairs.

Acceptable equipment includes Fluke Networks DSP 4300, DTX 1200, DTX 1800, Wirescope 350 and Wirescope Pro.

Test results shall be provided for all installed links in native electronic format for the tester used (that is, *.lkw or *.mdb). Test results shall not be provided in plain text format or hard copy.

9 Coaxial cable

9.1 General

In addition to the general requirements described, the following requirements apply to coaxial cables.

Coaxial communication cables shall be suitable for operation in the proximity of low voltage cables. Their material, construction and installation shall comply with AS/NZS 3000, IEC 61196-1 and IEC 61196-6.

9.2 Coaxial cable electrical parameters

The appropriate coaxial communication cable shall be selected to suit the application including at least 10 per cent spare in the loss budget. **Hold Point 7**

A 75 Ω cable shall be used for video applications; and a 50 Ω cable shall be used for data and applications using radio frequencies.
Coaxial communications cable shall withstand without breakdown:

- spark test of 6 kVAC in accordance with the spark test specified in AS/NZS 1660 Part 3, and
- withstand test of 2 kVAC for one minute in accordance with the withstand test as specified in AS/NZS 1660.

9.3 Installation

9.3.1 Installation procedure

Telecommunications cabling shall be installed in wiring enclosures in accordance with AS/CA S009 and AS/NZS 3000, by an ACMA registered cabler authorised under the Commonwealth Telecommunications Act 1997 to perform cabling work for telecommunications.

Installation of coaxial telecommunication cables shall comply with AS/NZS 1367. Coaxial cables installed with Low Voltage cabling within the same enclosure shall meet the insulation requirements of AS/NZS 3000 Clauses 1.10.4 and 3.9.9.3.

The cable manufacturer’s installation instructions regarding hauling tension and bend radius shall be adhered to. In general, the minimum bend radius of any coaxial cable shall not be less than 10 times the outside diameter of the cable sheath.

9.3.2 Joints and terminations

Unless otherwise specified, joints are not permitted in coaxial cables.

Cable ends shall be prepared for termination to industry standards and to suit cable types. Terminations shall be made in accordance with manufacturers’ instructions.

9.4 Testing of coaxial cables

All testing of coaxial cables to determine signal attenuation electrical parameters and verify the loss budget for the particular installation shall be carried out using test methods as specified in ANSI/SCTE 50.

Verification of coaxial cable DC resistance parameters shall be by manufacturer’s data sheet or a calibrated digital resistance meter. Alternatively, the installation Contractor may test the cable with an industry standard cable analyser (Fluke Networks DSP or DTX with coaxial adaptor or approved equivalent) and record the information in the analyser database software for submission to the department.

The Contractor shall supply hard and electronic copies of the TDR trace of each cable as well as tabulated results. Witness Point

10 Documentation

The documentation requirements defined in MRTS201 apply to work under this Technical Standard.

In addition, as a minimum, the following shall be included:

- locations of joints and inline joining enclosures
- schematic drawings for cable usage, including individual optical fibre cores, twisted pairs and coaxial cables
- schematic drawings for usage of fibre optic duct (or flow-tubes) and associated micro-tubes
• a fully updated communication patch record book (including fibre and copper) shall be installed within each ITS field cabinet or communications room which houses a patch rack (including a FOBOT, copper patch panel)
• a complete master patching record both in a softcopy and hardcopy format – the software copy shall be presented in a editable format (such as in Excel™ spreadsheet)
• all OTDR and LSPM test results for all installed fibre both in a softcopy and hardcopy format – the softcopy shall be able to be viewed with a PC; any viewing software shall be provided to the Administrator
• all copper testing results both in softcopy and hardcopy formats – the software copy shall be presented in a editable format (such as in Excel™ spreadsheet)
• copies of all fibre optic test certifications, and
• any other documentation requested under this Technical Specification.

11 Training
The training requirements defined in MRTS201 apply to work under this Technical Specification.

12 Maintenance
The maintenance requirements defined in MRTS201 apply to work under this Technical Specification.

13 Handover
The handover requirements defined in MRTS201 apply to work under this Technical Specification.
Appendix A – Departmental fibre budget loss calculation and result summary

<table>
<thead>
<tr>
<th>Fibre name (primary label*)</th>
<th>Fibre description (secondary label*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibre type</td>
<td>Single Mode</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Installed by</th>
<th>Installation date</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘A’ end location</td>
<td>‘B’ end location</td>
</tr>
<tr>
<td>‘A’ end FOBOT make and model</td>
<td>‘B’ end FOBOT make and model</td>
</tr>
<tr>
<td>‘A’ end FOBOT ID</td>
<td>‘B’ end FOBOT ID</td>
</tr>
<tr>
<td>‘A’ end termination type</td>
<td>‘B’ end termination type</td>
</tr>
</tbody>
</table>

Budget loss calculation (and other test information)

<table>
<thead>
<tr>
<th>Length</th>
<th>Loss per km</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>@1310 nm</td>
</tr>
<tr>
<td></td>
<td>@1550 nm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of connectors</th>
<th>Number of splices</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Budget loss 1310 nm</th>
<th>Budget loss 1550 nm</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>LSPM reference method</th>
<th>Manufacturer’s propagation delay</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>OTDR launch lead length ‘A’</th>
<th>OTDR launch lead length ‘B’</th>
</tr>
</thead>
</table>
Results summary

<table>
<thead>
<tr>
<th>‘A’ end port no.</th>
<th>Pigtail buffer colour</th>
<th>Core number</th>
<th>Core colour</th>
<th>‘B’ end port no.</th>
<th>LSPM loss 1310 nm A-B</th>
<th>LSPM loss 1550 nm A-B</th>
<th>LSPM loss 1310 nm B-A</th>
<th>LSPM loss 1550 nm B-A</th>
<th>Pass/ fail LSPM</th>
<th>Pass/ fail OTDR</th>
<th>OTDR propagation delay in ns/m</th>
<th>OTDR anomalies (dB Loss) (if any)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Blue</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Orange</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Green</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Brown</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Grey</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>White</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Red</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Black</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Yellow</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Violet</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Pink</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Aqua</td>
<td></td>
</tr>
</tbody>
</table>