Technical Specification

Transport and Main Roads Specification
MRTS91 Conduits and Pits

October 2015
Contents

1 Introduction ........................................................................................................................................ 1

2 Definition of terms ............................................................................................................................ 1

3 Referenced documents ....................................................................................................................... 2

3.1 Standard Drawings ....................................................................................................................... 3

4 Standard test methods ...................................................................................................................... 3

5 Quality system requirements ............................................................................................................ 4

5.1 Hold Points, Witness Points and Milestones ................................................................................. 4

5.2 Construction procedures ................................................................................................................. 4

6 Requirements for the installation of cables, conduits and pits ...................................................... 5

6.1 General .......................................................................................................................................... 5

6.2 Electrical systems .......................................................................................................................... 5

6.3 Communications systems .............................................................................................................. 5

7 Materials .......................................................................................................................................... 5

7.1 General .......................................................................................................................................... 5

7.2 Conduit for electrical cables ........................................................................................................ 6

7.2.1 General ..................................................................................................................................... 6

7.2.2 Non-metallic rigid conduit ....................................................................................................... 6

7.2.3 Metallic conduit ......................................................................................................................... 6

7.2.4 Flexible conduit ......................................................................................................................... 6

7.2.5 Heterogeneous conduit ........................................................................................................... 6

7.2.6 Elbows and tees ....................................................................................................................... 6

7.2.7 Fixings ..................................................................................................................................... 7

7.2.8 Limitations of location of types of conduit .............................................................................. 7

7.3 Communications conduit .............................................................................................................. 7

7.4 Conduit for boring/jacking ........................................................................................................... 7

7.5 UPVC priming fluid and solvent cement .................................................................................. 7

7.6 Marker tape .................................................................................................................................. 7

7.7 Draw rope ..................................................................................................................................... 7

7.8 Circular pits and covers ............................................................................................................... 8

7.8.1 Pit ........................................................................................................................................... 8

7.8.2 Collar ..................................................................................................................................... 8

7.8.3 Cover ..................................................................................................................................... 9

7.8.4 Riser ...................................................................................................................................... 10

7.9 Rectangular pits and covers ........................................................................................................ 11

7.9.1 Pit ........................................................................................................................................... 11

7.9.2 Covers ................................................................................................................................... 11

7.10 Marker posts ............................................................................................................................... 13

7.11 Bedding sand ............................................................................................................................... 13

7.12 Granular filter material .............................................................................................................. 13

7.13 Lean mix concrete ........................................................................................................................ 13

7.14 Backfill ...................................................................................................................................... 13

8 Excavation for underground conduits and pits ............................................................................ 13
8.1 General ................................................................................................................................. 13
8.2 Trench width .......................................................................................................................... 13
8.3 Trench walls .......................................................................................................................... 14
8.4 Bottom of trench .................................................................................................................. 14
8.5 Timing of excavation ............................................................................................................ 14
8.6 Existing pavement ................................................................................................................ 14
8.7 Boring and/or jacking ........................................................................................................... 14
8.8 Excavated material ............................................................................................................... 14
8.9 Trench depth ....................................................................................................................... 14
8.10 Surplus excavated material ............................................................................................... 14
9 Installation of conduits ........................................................................................................... 14
  9.1 General .................................................................................................................................. 14
  9.2 Location .................................................................................................................................. 15
  9.3 Conduit bore ......................................................................................................................... 15
  9.4 Road crossings ....................................................................................................................... 15
  9.5 Conduits in barrier ............................................................................................................... 15
  9.6 Changes in levels or direction of conduit ............................................................................. 15
  9.7 Bends ...................................................................................................................................... 16
    9.7.1 Use of bends ................................................................................................................... 16
    9.7.2 Bends for road crossing conduits ................................................................................ 16
    9.7.3 Bends for backbone conduits ...................................................................................... 16
  9.8 Bedding of conduit .............................................................................................................. 17
  9.9 Conduit at pits ..................................................................................................................... 17
  9.10 Shared trenches and adjacent conduits ........................................................................... 17
  9.11 Marking tape ..................................................................................................................... 17
  9.12 Jointing ............................................................................................................................... 17
    9.12.1 General ....................................................................................................................... 17
    9.12.2 Non-metallic conduit ................................................................................................. 17
    9.12.3 Metallic conduit ......................................................................................................... 17
    9.12.4 Flexible conduit ....................................................................................................... 17
  9.13 Draw rope ......................................................................................................................... 18
  9.14 Conduit plugs/bungs ......................................................................................................... 18
  9.15 Surface mounted conduits ............................................................................................... 18
  9.16 Flexible conduit in concrete ........................................................................................... 18
10 Installation of pits .................................................................................................................. 18
  10.1 General ............................................................................................................................ 18
  10.2 Placement of pits ............................................................................................................... 18
    10.2.1 General ...................................................................................................................... 18
    10.2.2 Pits with combined steel and plastic covers ............................................................ 19
  10.3 Numbering of pits ............................................................................................................. 19
  10.4 Bedding of pit .................................................................................................................. 19
  10.5 Circular pit collars .......................................................................................................... 19
1 Introduction

This Technical Specification applies to the supply, installation and testing of materials, pits, conduits and conduit fittings used to form a segregated wiring enclosure for the housing and protection of either electrical or communications cables.

The wiring enclosure may be either:

- underground
- in a structure or barrier, or
- on a surface.

This Technical Specification shall be read in conjunction with MRS91 Conduits and Pits, MRTS01 Introduction to Technical Specifications, MRTS50 Specific Quality System Requirements and other Technical Specifications as appropriate.

This Technical Specification forms part of the Transport and Main Roads Specifications Manual.

In this version: (a) Surface treatment of electrical pits, now to include all pits, rectangular and circular; and (b) Standard Drawing 1416, to include details on concrete surrounds for circular pits.

2 Definition of terms

The terms used in this Technical Specification are as defined in Clause 2 of MRTS01 Introduction to Technical Specifications. Further definitions are as defined in Table 2.

Table 2 – Definition of terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Act</td>
<td><em>Electrical Safety Act 2002 and associated Regulations and Codes of Practice.</em></td>
</tr>
<tr>
<td>Administrator</td>
<td>In the context of this Specification, the Administrator (or representative) must have formal electrical qualifications.</td>
</tr>
<tr>
<td>Registered Cabling Provider</td>
<td>A cabling provider registered in accordance with the <em>ACMA Telecommunications Cabling Provider Rules 2000.</em></td>
</tr>
<tr>
<td>Conduit</td>
<td>Parts of a closed wiring system used to enclose cables in an electrical or communications installation, which allows the cables to be drawn in or replaced. Conduits shall have a circular cross-section. Conduits shall include bends, elbows, junction boxes, tees and fixings.</td>
</tr>
<tr>
<td>Conduit bends</td>
<td>Prefabricated curved lengths of conduit designed to join two conduits.</td>
</tr>
<tr>
<td>Elbow</td>
<td>A conduit bend of shorter combination of length and angle than defined in Clause 9.6 of this Specification.</td>
</tr>
<tr>
<td>Electricity entity</td>
<td>As defined in the <em>Electrical Safety Act.</em></td>
</tr>
<tr>
<td>Electrical works</td>
<td>As defined in the <em>Electrical Safety Act.</em></td>
</tr>
<tr>
<td>Extra low voltage</td>
<td>Not exceeding 50 V a.c., or 120 V, ripple free d.c.</td>
</tr>
<tr>
<td>FFL</td>
<td>Finished floor level.</td>
</tr>
<tr>
<td>ITS</td>
<td>Intelligent Transport Systems</td>
</tr>
<tr>
<td>Licensed Electrical</td>
<td>Holder of an Electrical Contractor License under the <em>Electrical Safety Act.</em></td>
</tr>
</tbody>
</table>
### Technical Specification, MRTS91 Conduits and Pits

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contractor</td>
<td></td>
</tr>
<tr>
<td>Low voltage</td>
<td>Exceeding extra low voltage but not exceeding 1000 V a.c. or 1500 V d.c.</td>
</tr>
<tr>
<td>Pit</td>
<td>A wiring enclosure used to provide space for placing and joining cables,</td>
</tr>
<tr>
<td></td>
<td>pulling cables, performing an operation on cables or for the inclusion of</td>
</tr>
<tr>
<td></td>
<td>other equipment.</td>
</tr>
<tr>
<td>Communications Supervisor</td>
<td>A Registered Cabling Provider or a Licensed Electrical Contractor under</td>
</tr>
<tr>
<td></td>
<td>the direct supervision of a Registered Cabling Provider.</td>
</tr>
<tr>
<td>RDD</td>
<td>Relative dry density.</td>
</tr>
<tr>
<td>Unregistered Cabling Provider</td>
<td>A person who is not a Registered Cabling Provider, but who is directly</td>
</tr>
<tr>
<td></td>
<td>supervised by a Registered Cabling Provider.</td>
</tr>
<tr>
<td>Wiring Rules</td>
<td>AS/NZS 3000 and/or AS/ACIF S009 as appropriate to the respective service.</td>
</tr>
</tbody>
</table>

### 3 Referenced documents

Table 3 lists documents referenced in this Technical Specification.

**Table 3 – Referenced documents**

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS/ACIF S008</td>
<td>Requirements for Authorised Cabling Products</td>
</tr>
<tr>
<td>AS/ACIF S009</td>
<td>Installation Requirements for Customer Cabling (Wiring Rules)</td>
</tr>
<tr>
<td>AS/NZS 3000</td>
<td>Australian/New Zealand Standard Wiring Rules</td>
</tr>
<tr>
<td>AS 1074</td>
<td>Steel tubes and tubulars for ordinary service</td>
</tr>
<tr>
<td>AS/NZS 1580.408.5</td>
<td>Paints and related materials – Methods of test – Adhesion – Pull-off test</td>
</tr>
<tr>
<td>AS/NZS 2053, Part 2</td>
<td>Conduits and fittings for electrical installations – Rigid plain conduits and fittings of insulating material</td>
</tr>
<tr>
<td>AS/NZS 2053, Part 4</td>
<td>Conduits and fittings for electrical installations – Flexible plain conduits and fittings of insulating material</td>
</tr>
<tr>
<td>AS/NZS 2053, Part 7</td>
<td>Conduits and fittings for electrical installations – Rigid metal conduits and fittings</td>
</tr>
<tr>
<td>AS/NZS 2053, Part 8</td>
<td>Conduits and fittings for electrical installations – Flexible conduits and fittings of metal or composite material</td>
</tr>
<tr>
<td>AS 2648.1</td>
<td>Underground marking tape – Part 1: Non-detectable tape</td>
</tr>
<tr>
<td>AS 3879</td>
<td>Solvent cements and priming fluids for PVC (PVC-U and PVC-M) and ABS pipes and fittings</td>
</tr>
<tr>
<td>AS 3996</td>
<td>Access covers and grates</td>
</tr>
<tr>
<td>AS 4586</td>
<td>Slip resistance classification of new pedestrian surface materials</td>
</tr>
<tr>
<td>HB197</td>
<td>An Introductory Guide to the Slip Resistance of Pedestrian Surface Materials</td>
</tr>
<tr>
<td>MRS91</td>
<td>Conduits and Pits</td>
</tr>
<tr>
<td>MRTS01</td>
<td>Introduction to Technical Specifications</td>
</tr>
<tr>
<td>MRTS04</td>
<td>General Earthworks</td>
</tr>
<tr>
<td>MRTS14</td>
<td>Road Furniture</td>
</tr>
</tbody>
</table>
Table 3.1 lists the Transport and Main Roads Standard Drawings referenced in this document.

**Table 3.1 – Referenced Standard Drawings**

<table>
<thead>
<tr>
<th>Drawing number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1149</td>
<td>Traffic Signals/Road Lighting/ITS – Installation of Underground Electrical and Communications Conduit</td>
</tr>
<tr>
<td>1314</td>
<td>Traffic Signals/Road Lighting – Cable Jointing Pit – Drainage Details</td>
</tr>
<tr>
<td>1395</td>
<td>Road Lighting Pole – Fixed Base in Concrete Median Barrier Installation Details</td>
</tr>
<tr>
<td>1415</td>
<td>Traffic Signals/Road Lighting – Cable Jointing Pit Circular 600 Diameter</td>
</tr>
<tr>
<td>1416</td>
<td>Traffic Signals/Road Lighting – Collar and Concrete Surround for 600 Diameter Circular Cable Jointing Pit</td>
</tr>
<tr>
<td>1417</td>
<td>Traffic Signals/Road Lighting – Cable Jointing Pit Circular 600 Diameter Cover Drawing 1 of 2 and Drawing 2 of 2</td>
</tr>
<tr>
<td>1418</td>
<td>Traffic Signals/Road Lighting – Cable Junction Box Supporting Strap</td>
</tr>
<tr>
<td>1440</td>
<td>Traffic Signals/Road Lighting – Cable Jointing Pit – Rectangular Concrete Surround</td>
</tr>
<tr>
<td>1461</td>
<td>Type F Concrete Barrier - Extruded Median Barrier- Details of Road Lighting Pole Cover Plates</td>
</tr>
<tr>
<td>1469</td>
<td>Concrete Barrier – Extruded Median Barrier – Details of Road Lighting Pole Cover Plates</td>
</tr>
<tr>
<td>1627</td>
<td>Road Lighting – Switchboard Top Mounted</td>
</tr>
<tr>
<td>1630</td>
<td>Traffic Signals/Road Lighting - Conduit entry details into circular pits</td>
</tr>
<tr>
<td>1631</td>
<td>Traffic Signals/Road Lighting - Cable jointing pit Type 1 (J), 3, 4, 7 and 8</td>
</tr>
<tr>
<td>1632</td>
<td>Traffic Signals/Road Lighting - Cable jointing pit cover Type 1 (J)</td>
</tr>
<tr>
<td>1633</td>
<td>Traffic Signals/Road Lighting - Cable jointing pit cover Types 3 and 4</td>
</tr>
<tr>
<td>1634</td>
<td>Traffic Signals/Road Lighting - Cable jointing pit cover Types 7 and 8</td>
</tr>
<tr>
<td>1681</td>
<td>Traffic Signals/Road Lighting - Riser for 600 Diameter Circular Cable Jointing Pit</td>
</tr>
<tr>
<td>1699</td>
<td>Traffic Signals/Road Lighting/ITS - Parts List (7 Sheets)</td>
</tr>
</tbody>
</table>

4 Standard test methods

For conduits and pits forming an electrical wiring enclosure, the Administrator shall certify that the materials and installation complies with the Drawings, the Specifications, Australian Standards and Regulations.

For conduits and pits forming a communications wiring enclosure, the Administrator shall certify that
the materials and installation complies with the Drawings, the Specifications, Australian Standards and Regulations.

Testing of compaction of backfilling shall be carried out in accordance with the requirements of MRTS04 General Earthworks.

5 Quality system requirements

5.1 Hold Points, Witness Points and Milestones

General requirements for Hold Points, Witness Points and Milestones are specified in Clause 5.2 of MRTS01 Introduction to Technical Specifications.

The Hold Points, Witness Points and Milestones applicable to this Technical Specification are summarised in Table 5.1.

Table 5.1 – Hold Points, Witness Points and Milestones

<table>
<thead>
<tr>
<th>Clause</th>
<th>Hold Point</th>
<th>Witness Point</th>
<th>Milestone</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2</td>
<td>1. Construction Procedures</td>
<td>Provision of construction procedures for the installation of conduits and pits (14 days)</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>2. Material Compliance Certificate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>3. Excavation for underground conduits and pits</td>
<td>Set out of underground conduits and pits (48 hours)</td>
<td></td>
</tr>
<tr>
<td>8.4</td>
<td></td>
<td>Bottom of trench</td>
<td></td>
</tr>
<tr>
<td>8.7</td>
<td>4. Boring and/or jacking of conduits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>5. Installation of conduits</td>
<td>Installation of conduits</td>
<td></td>
</tr>
<tr>
<td>9.2</td>
<td>6. Location of conduit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.4</td>
<td>7. Bedding of pits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.9</td>
<td>8. Bedding of pits</td>
<td>Pit drainage</td>
<td></td>
</tr>
<tr>
<td>11.1</td>
<td>7. Backfilling of trenches</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.2 Construction procedures

A construction procedure for the installation of all conduits and pits shall be submitted to the Administrator at least 14 days prior to the commencement of installation.

This construction procedure shall include, but not be limited to, detailing the materials and methods to be used for:

- a) pits
- b) conduits
- c) pits over existing conduits
- d) marker tape
- e) draw rope
- f) shared trenches
- g) installation of fixing brackets and/or anchors to structures
No construction activity associated with the installation of conduits and pits shall commence until the expiration of the 14 day period. **Hold Point 1**

6 **Requirements for the installation of cables, conduits and pits**

6.1 **General**

Cables must be installed in wiring systems as per AS/NZS 3000. The wiring systems are required to provide mechanical protection to the cables in order to ensure a degree of safety and protection. Mechanical protection is provided by installing the cables in a wiring enclosure, formed by the use of conduits and pits.

All new installations shall segregate electrical cables from communications cables by way of separate wiring enclosures.

6.2 **Electrical systems**

Electrical cables are installed to provide power circuits to equipment installed in the field, including traffic signals, road lighting and other Intelligent Transport Systems (ITS) equipment.

The Contractor must engage a Licensed Electrical Contractor to perform the duties and functions of Electrical Works.

Wiring enclosures forming part of an electrical wiring system shall be installed in accordance with the Wiring Rules and all works shall comply with the *Electrical Safety Act*.

6.3 **Communications systems**

Communications cables are installed to transmit video, data and voice between ITS devices installed in the field and the Traffic Management Centres.

The Contractor must engage a Registered Cabling Provider to perform the communications cabling works.

Wiring enclosures forming part of a communications wiring system shall be installed in accordance with AS/ACIF S009, and all works shall comply with the *Electrical Safety Act*.

7 **Materials**

7.1 **General**

All materials must comply strictly with the requirements of this Specification. For all materials, a certificate of such compliance shall be provided to the Administrator before the materials are incorporated into the works. **Hold Point 2**

Conduit and conduit fittings not protected against solar radiation shall be stored under cover to prevent damage by solar radiation.

Materials and equipment damaged prior to, and/or during installation must not be used.
Where so stated in Clause 1 of Annexure MRTS91.1, production samples of materials shall be provided to the Administrator. Production samples will be held throughout the period of the contract for the purpose of providing a reference against which all subsequent items may be gauged for compliance with this Specification.

7.2 Conduit for electrical cables

7.2.1 General

Conduit and conduit bends forming part of a wiring enclosure for the installation of Low Voltage wiring systems shall be one of the types described in Clauses 7.2.2 to 7.2.4 inclusive.

Fittings and fixings shall comply with the requirements of Clauses 7.2.5 to 7.2.8 inclusive.

7.2.2 Non-metallic rigid conduit

Non-metallic conduit and conduit bends shall be Heavy Duty (HD) rigid UPVC complying with the requirements of AS/NZ 2053, Part 2. The conduit shall have a smooth inner bore and shall not have a corrugated outer surface.

For underground installations or where installed within a structure or barrier, the conduit shall be coloured appropriately for the service being supplied, that is, orange for power and white for communications.

For surface mounted installations, conduit shall be classified as having protection against solar radiation and marked with the letter ‘T’, indicating such protection.

7.2.3 Metallic conduit

Metallic conduit and conduit bends shall be either:

a) a material classified as metal complying with the requirements of AS/NZS 2053, Part 7, or

b) heavy duty galvanised steel tube complying with the requirements of AS 1074.

All metallic conduits shall be free of burrs that may damage cables or alternatively shall be installed with PVC sleeves to prevent damage to cables.

PVC adaptors shall be used where holes are drilled in metallic conduits.

Metallic conduits and bends must be earthed as necessary to comply with the Wiring Rules.

7.2.4 Flexible conduit

Flexible conduit must comply with AS/NZ 2053, Part 4 or AS/NZ 2053, Part 8 and may only be used in specific situations as stated in this Specification or in Clause 2 of Annexure MRTS91.1.

Corrugated conduit shall not be used for trenched installations. Heavy duty corrugated or Core-flow™ conduits types are also excluded from trenched installations.

7.2.5 Heterogeneous conduit

Where two different types of conduit are joined, proprietary conduit mating joints (preferably threaded) or junction boxes shall be used.

7.2.6 Elbows and tees

Elbows and tees shall be of the same material and to the same standard as the adjacent conduit. Tees and elbows shall be provided with inspection plates.
Tees shall not be installed underground or within a structure or barriers. Elbows should not be installed underground or within a structure or barriers.

7.2.7 Fixings
Fixing brackets and/or anchors for surface mounted conduit shall be either:
   a) proprietary fixings deemed suitable by the manufacturer for the particular application, or
   b) where so stated on the Drawings or in Clause 3 of Annexure MRTS91.1, manufactured components complying with the stated requirements.

7.2.8 Limitations of location of types of conduit
Unless protected by a metal cover, only metallic conduit and fittings shall be used in sections of a surface mounted installation that are within 3 m of areas that may be accessed by the public. Tees and elbows shall not be located within 3 m of areas that may be accessed by the public.

7.3 Communications conduit
Conduit and conduit bends forming part of a wiring enclosure for the installation of communications cables shall comply with the requirements of Clause 5.3 of AS/ACIF S008 except they shall be heavy duty. This applies to underground, surface mounted and within structure wiring enclosures. Communications conduits shall have a smooth inner bore and shall not have a ribbed outer surface.

7.4 Conduit for boring/jacking
Conduit used for boring/jacking shall be continuous and manufactured of Polyethylene (or equivalent), with a wall thickness of at least 9 mm.

7.5 UPVC priming fluid and solvent cement
A proprietary UPVC priming fluid and solvent cement, manufactured to AS 3879, shall be used to join all UPVC conduits and conduit fittings.

7.6 Marker tape
Marker tape shall comply with the requirements of AS 2648.1. Orange marker tape shall be used to identify low voltage electrical wiring systems. White marker tape shall be used to identify communications systems.

7.7 Draw rope
Draw rope shall be a general-purpose synthetic polypropylene filament rope of minimum diameter of 4 mm.
Draw ropes manufactured from other materials may be used where it can be demonstrated conclusively that draw rope will function to a standard equal to or better than that described above. Metallic wire or cable shall not be used as draw rope.
7.8 Circular pits and covers

7.8.1 Pit

7.8.1.1 General arrangement
Circular pits shall be manufactured to the dimensions and arrangement shown on Standard Drawing 1415.

7.8.1.2 Material
Circular pits shall be manufactured of materials capable of being buried without any damaging effects, or shall be treated for this purpose. Pits shall have smooth internal walls.

Circular pits manufactured from plastic materials are acceptable. All materials shall have protection against solar radiation.

Circular pits shall be supplied as one complete unit with the base permanently attached. If the base is manufactured separately to the walls, it shall be attached using non-corrosive materials that do not protrude internally from the pit wall.

7.8.1.3 Mechanical strength of pits
Circular pits shall have sufficient strength in the vertical direction to support a Class B design load when tested in accordance with AS 3996 where the load is transferred by the collar into the pit wall only by means of 12 M16 bolts.

The thickness and shape of materials used to form a pit shall provide sufficient strength to support a wheel loading of 2.6 tonne, when installed in the ground with eight 100 mm diameter holes in the side of the pit. The minimum distance between holes upon pit entry is 30 mm.

The resultant permanent vertical deformation of the pit and collar system after the load is removed shall be less than 10 mm.

7.8.1.4 Cable junction enclosure mounting strap
Pits shall be provided with a cable junction enclosure mounting strap in accordance with Standard Drawing 1418.

7.8.1.5 Mass
Circular pits shall have a mass not greater than 40 kg.

7.8.2 Collar

7.8.2.1 General arrangement
Circular pit collars shall be manufactured to meet the general arrangement shown on Standard Drawing 1416.

Collars shall be designed to prevent misalignment of the cover to the pit, allow height adjustment of up to 50 mm and allow some vertical rotation to suit the cross-fall of the finished surface level.

The collar shall be placed on the pit prior to compaction of the backfill material to prevent deformation of the top of the pit.

Collars shall be designed to facilitate a lockable cover but shall not impede cable installation.
7.8.2.2 Material

Collars shall meet all requirements described below throughout the design life of 20 years.

Pit collars shall be manufactured from a highly durable material, shall be classified as having protection against solar radiation and be abrasion resistant.

Collars shall have a protective treatment to prevent corrosion.

Collars shall be supplied with an earthing screw, washer and nut and, where appropriate, shall be earthed by a non-ferrous earth wire in accordance with Standard Drawing 1416 and sized in accordance with AS/NZS 3000.

7.8.2.3 Mechanical strength

Collars shall be capable of transferring the loading requirements specified in AS 3996 for Class B loading classification from the cover into the pit wall.

12 of M16 bolts shall be used to fix the collar to the pit.

7.8.2.4 Mass

Collars shall have a mass not greater than 40 kg.

7.8.3 Cover

7.8.3.1 General arrangement

The cover shall be manufactured to meet the general arrangement shown on Standard Drawing 1417.

Pit covers shall be designed and constructed such that members of the public cannot lift a pit cover using their hands, feet or any equipment that might normally be carried on their person.

Lifting holes shall be designed to prevent entry of foreign objects (e.g. syringes) into the pit but allow soil to pass through so lifting is not impeded. Lifting holes shall be compatible with a standard lifting device.

7.8.3.2 Material

Pit covers shall meet all requirements described below throughout the design life of 20 years.

Covers shall be manufactured from a non-conductive material or steel having a protective coating applied in accordance with Standard Drawing 1417 to provide insulation against indirect contact with a live low voltage conductor. The insulation resistance through a pit cover shall be not less than 1 mega-ohm when tested in accordance with Clause 6.3.3.3 of the Wiring Rules.

Coatings shall be tested for adhesion to the cover surface in accordance with AS/NZS 1580.408.5. Adhesion tests shall be performed on the coating material by a suitably rated NATA laboratory and certification provided that the adhesion value is at least 1 Mpa.

The material used shall be highly durable and have protection against solar radiation and be abrasion resistant.

7.8.3.3 Mechanical strength

Pit covers shall conform to the loading requirements stated in AS 3996 for Class B loading classification.
7.8.3.4 Slip resistance

The top surface of pit covers shall conform to the requirements of AS 4586 and Table 3 of HB197 where the classification is for ‘External colonnades, walkways and pedestrian crossings’.

The slip resistance shall be evaluated in accordance with AS 4586 and HB197 where the nominated test method shall be either the ‘Wet Pendulum Test Method’ in accordance with Appendix A of AS 4586 or the ‘Oil – Wet Ramp Test Method’ in accordance with Appendix D of AS 4586.

7.8.3.5 Mass

Covers shall have a mass of between 10 kg and 25 kg and shall not be hinged to a supporting frame or collar. Pit covers shall be designed such that water may escape without lifting the cover.

7.8.3.6 Locking mechanism

Covers shall be lockable and be fitted with a tamper-proof mechanism, which can be locked and unlocked using a standard pit lifting device.

7.8.3.7 Marking

Covers for pits forming a wiring enclosure for electrical cabling shall be marked with the word ‘ELECTRICAL’, with a minimum text height of 30 mm.

Pit covers for pits forming a wiring enclosure for communications cabling shall be marked with the word ‘COMMUNICATIONS’, with a minimum text height of 20 mm.

Lettering shall be in uppercase Arial font and shall be engraved, embossed, cast or otherwise made permanent and legible.

7.8.4 Riser

7.8.4.1 General arrangement

Circular pit riser shall be manufactured to meet the general arrangement shown on Standard Drawing 1681.

Pit riser shall meet all requirements described below on materials and mechanical strength throughout the design life of 20 years.

7.8.4.2 Materials

Pit riser shall be manufactured from a highly durable material, shall be classified as having protection against solar radiation and be abrasion resistant, and from a non-conductive material to safe guard against contact with a live low voltage conductor.

Circular pit riser shall be of minimum 660 mm inner diameter and maximum 700 mm outer diameter, wall thickness to be 13 mm ± 2 mm, absolute minimum thickness of 11 mm. The maximum length shall be 475 mm.

7.8.4.3 Mechanical strength

Circular pit riser shall have sufficient vertical strength to support the Class B design load applied in accordance with AS 3996 where the load is transferred from the collar into the pit wall only via 12 M16 bolts. The resultant permanent vertical deformation of the pit and collar system after the load is removed shall be less than 10 mm.
7.9  Rectangular pits and covers

7.9.1  Pit

7.9.1.1  General arrangement

Pits and covers shall be manufactured to the dimensions and arrangement shown on Standard Drawings 1631, 1632, 1633 and 1634.

7.9.1.2  Materials

Rectangular pits shall be manufactured of materials capable of being buried without any damaging effects, or shall be treated for this purpose. Pits shall have smooth, internal walls.

Rectangular pits may be manufactured from plastic, polycarbonate or concrete materials. All materials shall have protection against solar radiation.

Pre-cast and cast-insitu concrete pits shall not be used in any location nominated in Clause 4 of Annexure MRTS91.1. Where used, concrete shall be Class 32 MPa/28.

7.9.1.3  Mechanical strength of pits

The thickness and shape of materials used to form a rectangular pit shall provide sufficient strength to support a wheel loading of at least one tonne when installed in the ground with two holes in each side and each end of the pit as stated in Table 7.9.1.3.

<table>
<thead>
<tr>
<th>Pit type</th>
<th>Maximum hole diameter (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50 †</td>
</tr>
<tr>
<td>3</td>
<td>65</td>
</tr>
<tr>
<td>4</td>
<td>85</td>
</tr>
<tr>
<td>7, 8</td>
<td>100</td>
</tr>
</tbody>
</table>

† One hole only

The thickness of the walls and bottom of the pit shall exhibit a shearing or cutting characteristic such that the holes specified above can be cut with a normally available hole saw or press to within 30 mm of the corners and/or edges of the pit.

7.9.1.4  Cable supports

Removable cable supports shall be provided for Type 7 and Type 8 rectangular pits.

7.9.2  Covers

7.9.2.1  General arrangement

Pit covers shall be manufactured from steel in accordance with Standard Drawings 1632, 1633 and 1634 or purpose-designed concrete infill galvanised steel to the dimensions shown on the Drawings.

Pit covers shall be designed and constructed such that members of the public cannot lift a pit cover using their hands, feet or any equipment that might normally be carried on their person.

Lifting holes shall be designed to prevent entry of foreign objects (e.g. syringes) into the pit but allow soil to pass through so lifting is not impeded. Lifting holes shall be compatible with a standard lifting device.
Purpose-designed concrete infill covers shall be tapered to facilitate easy removal with a lifting device.

Twin covers shall be used for pit Types 7 and 8. In such a case, the two sections of cover shall be identical in dimension and form.

### 7.9.2.2 Material

Pit covers and spacer bars shall meet all the requirements described below throughout the entire 20 years design life of the cover.

Covers and spacer bars shall be manufactured from a non-conductive material or steel having a protective coating to provide insulation against indirect contact with a live low voltage conductor. The insulation resistance through a pit cover shall be not less than 1 mega-ohm when tested in accordance with Clause 6.3.3.3 of the Wiring Rules.

Coatings shall be tested for adhesion to the cover surface in accordance with AS/NZS 1580.408.5. Adhesion tests shall be performed on the coating material by a suitably rated NATA laboratory and certification provided that the adhesion value is at least 1 MPa.

The material used shall be highly durable and classified as having protection against solar radiation and be abrasion resistant.

### 7.9.2.3 Mechanical strength

Pit covers shall conform to the loading requirements stated in AS 3996 for Class B loading classification.

### 7.9.2.4 Slip resistance

The top surface of all covers shall meet the requirements of AS 4586 and Table 3 of HB197 where the classification is for ‘External colonnades, walkways and pedestrian crossings’.

The slip resistance shall be evaluated in accordance with AS 4586 and HB197 where the nominated test method shall be either the ‘Wet Pendulum Test Method’ in accordance with Appendix A of AS 4586 or the ‘Oil – Wet Ramp Test Method’ in accordance with Appendix D of AS 4586.

### 7.9.2.5 Mass

Covers shall have a mass of between 10 kg and 25 kg and shall not be hinged to a supporting frame or collar. Pit covers shall be designed such that water may escape without lifting the cover.

### 7.9.2.6 Marking of pit covers

Covers for pits forming a wiring enclosure for electrical cabling shall be marked with the word ‘ELECTRICAL’, with a minimum text height of 30 mm.

Pit covers for pits forming a wiring enclosure for communications cabling shall be marked with the word ‘COMMUNICATIONS’, with a minimum text height of 20 mm.

Lettering shall be in uppercase Arial font and shall be engraved, embossed, cast or otherwise made permanent and legible. The words shall be marked permanently on the top of the cover in the rectangular blank areas shown in Standard Drawings 1632, 1633 and 1634.

### 7.9.2.7 Cover support bars

Cover support bars shall be provided to support the cover where necessitated by the cover design and in accordance with Standard Drawings 1631 and 1634. Cover support bars shall comply with requirements of Clause 7.9.2.2.
7.10 **Marker posts**

Marker posts shall comply with the material requirements for Road Edge Guide Posts as set out in Clause 9 of MRTS14 *Road Furniture*. Marker posts shall protrude 1500 mm above ground level and be identified with durable retro-reflective black and yellow stripe material.

7.11 **Bedding sand**

Bedding sand shall comply with the requirements of Clause 19.2.5 of MRTS04 *General Earthworks*.

7.12 **Granular filter material**

Granular filter material shall comply with the requirements of Clause 19.2.4 of MRTS04 *General Earthworks*.

7.13 **Lean mix concrete**

Lean mix concrete for backfill shall comply with the requirements of Clause 19.2.11 of MRTS04 *General Earthworks*.

7.14 **Backfill**

Dry stabilised sand for backfill shall comply with the requirements of Clause 19.2.10 of MRTS04 *General Earthworks*.

8 **Excavation for underground conduits and pits**

8.1 **General**

Excavation for conduits and pits shall be carried out in accordance with the requirements of MRTS04 *General Earthworks*.

Excavation for conduits and pits shall be classed as confined excavation as defined in MRTS04 *General Earthworks*. Care shall be taken to minimise disturbance to existing work consistent with complying with the minimum clearances stated in this Specification.

Existing underground services in the proposed excavation area shall be identified prior to commencement of excavation. If any asbestos is found, refer to MRTS96 for the *Management and Removal of Asbestos* before continuing with the excavation/installation.

Generally, the locations of conduits and pits shown on the drawings are indicative only and conduit runs shall set out so as to best suit the conditions on the Site at the time of construction whilst maintaining the integrity and intent of the cabling design. Conduit runs and pit locations shall be set out at and notice of such set out shall be provided to the Administrator at least 48 hours prior to the commencement of construction. **[Milestone]**

Construction shall not commence before the expirations of the period of notice. **[Hold Point 3]**

8.2 **Trench width**

Trenches shall be excavated in accordance with the details shown on Standard Drawing 1149. Trench widths less than those specified in that drawing may be used where it can be demonstrated that completed conduits and pits comply in all other respects with the requirements of this Specification and that the performance of the conduit and/or pit will not be compromised.
8.3 Trench walls
Trench walls shall be cut vertical to within a tolerance of 1 horizontal in 10 vertical.

8.4 Bottom of trench
The bottom of the trench shall be compacted as per Standard Drawing 1149 to form a firm uniform surface free from loose material. [Witness Point]

8.5 Timing of excavation
When excavating a trench in new roadwork, trenching operations shall be carried out after compaction of the earthworks and prior to the placement of any pavement material or surface finish.

8.6 Existing pavement
Where trenching is carried out across an existing paved surface, the surface shall be pre-cut in a straight line at both trench walls so as to minimise reinstatement work.

8.7 Boring and/or jacking
Boring and/or jacking of conduit shall be carried out by experienced operators using purpose made equipment which is capable of maintaining correct line and levels of completed conduits. Work shall not commence until it has been demonstrated to the Administrator that the proposed equipment can accurately install the conduit in accordance with the Standard Drawing 1149. [Hold Point 4]

Excavation of working spaces to assist in boring and/or jacking operations shall be kept to a minimum and such working spaces shall be reinstated to as-found condition after completion of conduit installation.

8.8 Excavated material
The excavated material shall be placed well clear of the trench. If topsoil is required to be reused, it shall be kept separate from the remainder of the excavated material.

8.9 Trench depth
The minimum cover to conduits shall be as shown on Standard Drawing 1149.

The maximum cover to conduits shall be such that the conduit depth shall not be greater than the depth of the appropriate pit entry.

8.10 Surplus excavated material
Surplus excavated material shall be used or disposed of in accordance with the requirements of Clause 11 of MRTS04 General Earthworks.

9 Installation of conduits
9.1 General
The installation of conduits shall conform to the requirements of Standard Drawing 1149. The installation of communications conduits shall also comply with the requirements of AS/ACIF S009.

Prior to installation, the Contractor shall inspect all conduit and conduit fittings to ensure that they are free of any defects that could damage the cables during installation.

After installation and backfilling, the conduit and conduit fittings shall be proved by drawing a mandrel having a diameter of at least 95% of the internal diameter of the conduit. The mandrel shall have a
length sufficient to allow it to pass around any bends in the conduit, but not shorter than 95% of the diameter of the conduit being tested. **Hold Point 5**

The Contractor shall effect repairs and re-test the conduit should the mandrel not pass unhindered through the conduit. **Milestone**

### 9.2 Location

Conduits shall be installed in the locations shown on the drawings or described elsewhere in the Contract.

Generally, the locations of conduits shown on the drawings are indicative only and conduit runs shall be pegged out so as to best suit the conditions on the Site at the time of construction whilst maintaining the integrity and intent of the cabling design. Unless the conduit run has already been subject to the requirements of **Hold Point 3**, described in Clause 8.1, the set out of conduit runs shall be completed and notice of such set out shall be provided to the Administrator at least 48 hours prior to commencement of construction. **Hold Point 6**

### 9.3 Conduit bore

After installation, all conduits shall be free from foreign matter and from rough edges and projections which could damage the cable during installation.

The diameter of the bore shall be unaltered at bends and fittings.

### 9.4 Road crossings

Unless stated elsewhere in the contract, road crossings shall consist of at least two 100 mm electrical conduits and two 100 mm communications conduits.

At intersections, the minimum road crossing shall be two 100 mm electrical conduits and one 100 mm communications conduit. However, if the intersection forms part of the backbone, the minimum shall be two 100 mm electrical conduits and two 100 mm communications conduits, and minimum one 100 mm electrical conduit and one 100 mm communications conduit to field equipment or as the Contract requires.

### 9.5 Conduits in barrier

Conduits in barrier shall be minimum one 100 mm electrical conduit and one 100 mm communications conduit.

Conduits at barrier voids shall be minimum 10 mm above the FFL of the barrier void, and 100 mm above the finished level of the pavement as per Standard Drawing 1469, regardless of whether the barrier contains road lighting.

Road crossing conduits entering a barrier void may enter through the base of the barrier void. Barrier voids with road lighting poles shall take into account the space provisions for the road lighting footing and the conduits and size the width of the barrier void accordingly. Conduits entering the barrier void shall finish minimum 50 mm above the FFL of the barrier void. Barrier voids shall be free draining to the carriageway.

### 9.6 Changes in levels or direction of conduit

Where the level or direction of conduit conflicts with that of other facilities, the level or direction of the conduit may be locally altered, provided that the completed installation complies in all respects with the requirements of this Specification and that the performance of the conduit will not be
compromised. In all cases the stated minimum cover shall be maintained.

9.7  **Bends**

9.7.1  **Use of bends**

The use of bends shall be kept to an absolute minimum consistent with the details shown on the drawings. Additionally, local changes in level or direction of conduits between pits to avoid conflicts with other features may be accomplished by the use of bends.

9.7.2  **Bends for road crossing conduits**

The general requirements for road crossing conduits are shown in Figure A-1 of Appendix A to this Specification. Changes in level or direction for road crossing conduits may be accomplished by the use of standard preformed bends as shown in Table 9.6.2.

**Table 9.6.2 – Radius of curvature and bend angles for road crossing conduits**

<table>
<thead>
<tr>
<th>Conduit diameter (mm)</th>
<th>Minimum radius of curvature (mm)</th>
<th>Maximum angle of bend (degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>600</td>
<td>90</td>
</tr>
<tr>
<td>80</td>
<td>600</td>
<td>90</td>
</tr>
<tr>
<td>50</td>
<td>300</td>
<td>90</td>
</tr>
<tr>
<td>20</td>
<td>150</td>
<td>90</td>
</tr>
</tbody>
</table>

No more than 180 degrees of total change in direction shall be installed between pits or barrier voids/junction boxes.

Conduit bends for road crossings to be cast in structures or concrete barriers shall comply with Table 9.6.3.

9.7.3  **Bends for backbone conduits**

The general requirements for backbone conduits are shown in Figure 1 of Appendix A to this specification. Changes in level or direction for backbone conduits may be accomplished by the use of a standard preformed bend as shown in Table 9.6.3.

**Table 9.6.3 – Radius of curvature and bend angles for backbone conduits**

<table>
<thead>
<tr>
<th>Conduit diameter (mm)</th>
<th>Minimum radius of curvature (mm)</th>
<th>Maximum angle of bend (degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>760</td>
<td>22.5</td>
</tr>
<tr>
<td>80</td>
<td>600</td>
<td>22.5</td>
</tr>
<tr>
<td>50</td>
<td>450</td>
<td>22.5</td>
</tr>
</tbody>
</table>

No more than 90 degrees of total change in direction shall be installed between pits or junction boxes. A maximum of two bends shall be installed in any four metres distance of conduit run.

Conduits may be cold bent to an offset of no more than 250 mm in any 4.0 m length. However, any cold bend shall have a radius no less than 10.0 m.
9.8 **Bedding of conduit**
Conduit shall be bedded on bedding sand in accordance with the requirements of Clause 7.11 as shown on Standard Drawing 1149.

9.9 **Conduit at pits**
Conduit entering and exiting a pit shall conform to the locations and dimensions shown on Standard Drawings 1415 and 1630. Conduits shall protrude into rectangular pits at least 50 mm and not more than 100 mm.

Where practicable, conduits shall enter and exit a pit at the same height and orientation.

With the exception of road crossing conduits or as otherwise shown on the drawings, conduits shall not enter through the base of the pit.

9.10 **Shared trenches and adjacent conduits**
Adjacent sections of conduit may be placed in one trench provided that the minimum clearance between conduits, shown on Standard Drawing 1149, is maintained.

Conduit for communications cabling and conduit for electrical cabling may be installed in the same trench, provided that the requirements of AS/ACIF S009 are satisfied.

Where conduit for communications cabling and conduit for electrical cabling are installed in the same trench, one type of conduit shall be installed exclusively on one side of the trench and the remaining type of conduit shall be installed exclusively on the other side of the trench.

9.11 **Marking tape**
Marker tape shall be laid at approximately 50% of the depth of the conduit and conduit bends and above any mechanical protection provided. Marker tapes shall be installed in accordance with Standard Drawing 1149 and AS/ACIF S009 where applicable.

Marking tape is not required if conduit has been installed by boring and/or jacking.

9.12 **Jointing**

9.12.1 **General**
All joints between adjacent lengths of conduit and between conduit and conduit bends shall be made such that ingress of sand and soil is prevented.

Conduits manufactured from dissimilar materials shall be joined in accordance with Clause 7.2.5.

9.12.2 **Non-metallic conduit**
Non-metallic conduit and conduit bends shall be joined using UPVC priming fluid and solvent cement in accordance with Clause 7.5.

9.12.3 **Metallic conduit**
Metallic conduit and conduit bends shall be joined using threaded couplings. The minimum length of thread on the end of a conduit or conduit bend shall be 25 mm.

9.12.4 **Flexible conduit**
Flexible conduit shall be joined using proprietary fittings.
9.13 Draw rope

A draw rope shall be installed in each conduit run and shall have a minimum of 1.5 m excess length in each pit. Rope ends shall be firmly secured to prevent the ends being lost in a conduit.

Where a conduit does not terminate at a pit, the draw rope shall be tied to a timber (or other appropriate material) peg with approximate cross section 100 mm x 100 mm and not less than 400 mm long, driven firmly into the ground with the top 50 mm projecting above the finished surface. The top of the peg shall be painted yellow.

Any joints made in the draw rope shall be capable of resisting the same tensile load as the draw rope without such a joint. The joint shall not appreciably increase the diameter of the rope.

9.14 Conduit plugs/bungs

PVC caps shall be installed as soon as practicable after installation on all unused conduits to prevent extraneous material entering the conduit. Plugs and bungs shall be fixed with easily removed adhesive such as silicon beading to prevent inadvertent removal. A small hole can be drilled in the cap to pass the rope through prior to gluing it with the silicon beading.

9.15 Surface mounted conduits

Fixing brackets and/or anchors shall be installed as shown on the drawings, or as stated in Clause 3 of Annexure MRTS91.1, or where not so shown or stated, in accordance with the manufacturer’s recommendations.

Prior to drilling into existing concrete structures, reinforcement and built-in items shall be located by suitable non-destructive means so that such items are not to be damaged during installation. Concrete members incorporating tensioned steel stand shall not be drilled.

Conduit shall be installed in straight lines, or to follow a kerb line on a curved structure, as shown on the drawings. Conduit and fixings shall be installed so as to avoid protruding objects which might damage clothing or a human body.

9.16 Flexible conduit in concrete

Flexible conduit shall not be used in poured concrete.

10 Installation of pits

10.1 General

The installation of pits shall conform to the requirements of Standard Drawings 1314, 1415 and 1630 and Figure 1 of Appendix A of this Specification.

Prior to the issue of Certificate of Practical Completion, all pits shall be cleared of debris to the satisfaction of the Administrator and pit lids fitted securely.

10.2 Placement of pits

10.2.1 General

Pits shall be installed in the locations shown on the drawings or described elsewhere in the Contract.

As described in Clause 8.1, the locations of pits shown on the drawings are indicative only and pits shall set out so as to best suit the conditions on the Site at the time of construction whilst maintaining the integrity and intent of the cabling design.
Additional pits shall be provided as necessary to limit the number of bends as stated in Clause 9.7. Wherever practical, pits shall be installed adjacent to field equipment and generally spaced no more than 120 m apart.

Pits shall not be installed in vehicle paths, roadways, driveways, drain inverts, bikeways, ramps, pedestrian alignments, wheel-chair access pathways or ramps.

Pits can be installed behind physical protection such as fences, guard rails, crash barriers.

10.2.2 Pits with combined steel and plastic covers

Combined steel and plastic pit covers are not to be installed where exposed to vehicle traffic, except in locations where it is unlikely/infrequent that vehicles would drive over them. These locations are listed below, including median, footpath and traffic island.

a) Without kerb: Pits with combined steel and plastic covers shall not be installed on median, footpath or island.

b) With kerb:
   i. Angle of face of kerb to the roadway is between 90 – 100 degrees: Pits with combined steel and plastic covers must be installed at least 2 m away from the face of the kerb.
   ii. Angle of face of kerb to the roadway is more than 100 degrees: Pits with combined steel and plastic covers must be installed at least 2.5 m away from the face of the kerb.

10.3 Numbering of pits

Where so stated in Clause 5 of Annexure MRTS91.1, pits shall be numbered using the numbering system and the method of numbering described in that clause.

10.4 Bedding of pit

The bottom of an excavation for a pit shall be compacted to 95% RDD in accordance with the requirements of MRTS04 General Earthworks. Witness Point.

Pits shall be bedded on granular filter material in accordance with the requirements of Clause 7.12 and as shown on Standard Drawing 1314. Granular filter material shall be compacted to a density index of not less than 60 in accordance with the requirements of MRTS04 General Earthworks.

10.5 Circular pit collars

Standard Drawing No. 1416, to include details on concrete surrounds for circular pits.

Pit collars shall be placed on circular pits prior to compaction of the backfill material to prevent deformation of the top of the pit.

The use of circular pit collar is subject to the following conditions:

- all 12 bolts are installed as per Standard Drawing 1415
- the top edge of the collar is flush with the top of a concrete surround or concrete slab.

A plastic circular-pit collar shall only be installed as follows:

1. as an alternative to the cast metal collar as described on Standard Drawing 1416, and
2. into level ground and into a steel reinforced concrete slab as illustrated in Standard
3. with all bolts as per Standard Drawing 1415 that would attach the plastic collar to the plastic circular as per Standard Drawing 1699, shall be installed and tightened as per Standard Drawing 1416, before the concrete surround is poured, and

4. with the top edge of the plastic collar (fitted with a lid) finished flush with the top of the concrete surround and with the surrounding finished surface level, and

5. with the top of any concrete surround, finished flush with the surrounding finished surface level.

No plastic circular pit collar shall be installed on a pit:

1. in any sloping ground with a batter steeper than 1:20
2. outside a concrete slab without a reinforced concrete surround
3. in any grassed ground
4. in any ground subject to erosion
5. in association with a road lighting installation except as a collar for a circular pit in Standard Drawing 1627
6. in any areas subject to vehicular traffic, for example, grass slashers or tractors.

10.6 Finished surface level

Pits shall be installed such that the top surface of the pit coincides with the plane of the finished surface level.

10.7 Entry of conduit

Conduits shall enter the pits no lower than 1200 mm depth, preferably at the minimum depth of cover as specified in the standard.

Holes to allow conduit entry to the pit shall be made using a hole saw of the same diameter as the external diameter of the conduit. Conduit entries shall be in accordance with the requirements of the design drawings or Standard Drawings 1415 and 1630. With the conduit in place, the joint between the conduit and the pit or other cavity, such as the concrete median barrier as shown on Standard Drawings 1395 and 1469, shall be sealed such that ingress of sand and soil is prevented.

Vermin proofing of underground conduits shall be provided but not in all pits as it impedes the flow of water. The only conduits which require vermin proofing, at both ends, are conduits going from a pit into cavity/barriers, or field cabinet, and drainage lines on the lowest pit in the run. PVC caps can be used to prevent extraneous material entering the conduit. Caps shall be fixed with easily removed adhesive, such as silicon beading, to prevent inadvertent removal. Expansion foam shall not be used for vermin proofing.

10.8 Installation of pit over existing conduit

The installation of a pit over existing conduits is subject to special considerations and shall be carried out as described in the Construction Procedure provided in compliance with Clause 5.2.

10.9 Drainage

All pits shall be provided with drainage holes in the bottom of the pit. The lowest pit in each conduit...
system shall be drained as shown on the drawings or, where not so shown, as Type A or Type B on Standard Drawing 1314.

Conduit systems and finished surface levels shall be installed so as to drain and direct water away from field equipment. Conduit systems shall also be installed so as to drain from pits immediately linking to field equipment.

The lowest open end of conduits installed in poles and other field equipment enclosures shall be at least 50 mm higher than the surrounding finished surface level. **Witness Point**

**10.10 Pits installed on batter slopes**

Pits shall not be installed on slopes greater than 1 vertical to 3 horizontal except where specifically designed for the purposes as shown on the drawings.

Where pits are installed on batters with slopes greater than 1:3, the surface of the batter from the nearest access point (e.g. the roadway or shoulder) shall be treated in a manner sufficient to prevent any loose material interfering with the functioning of the pit.

**10.11 Maintenance marker posts**

Maintenance marker post shall be installed as shown on the relevant drawings and as stated in Clause 6 of Annexure MRTS91.1. In accordance with Clause 7.10, maintenance marker posts shall be installed to assist in the locating of pits in remote areas.

**11 Backfilling**

**11.1 General**

Backfilling shall be carried out in accordance with the requirements of Clause 19 of MRTS04 General Earthworks.

Backfilling of trenches for conduits shall not commence until the conduit system has been inspected by the Administrator. **Hold Point 7**

Conduits shall be backfilled in accordance with the details shown on Standard Drawing 1149.

**11.2 Pits**

Rectangular pits shall be backfilled with stabilised sand in accordance with the requirements stated in Clause 7.14 and the details shown on Standard Drawing 1314.

Circular pits shall be backfilled in the same manner as the adjacent conduits.

**11.3 Precautions against damage or movement**

During backfilling operations all necessary precautions shall be taken to protect the conduit and pits from any damage or movement.

The initial layer of backfill shall be rammed carefully around the conduit so as to cause no distortion to the cross section of the conduit.

**11.4 Roadways**

Conduits in roadways shall be backfilled as detailed on Standard Drawing 1149.

**11.5 Footways**

Conduits in footpaths shall be backfilled as detailed on Standard Drawing 1149.
12 Surface treatment

Surface treatment of electrical pits, now to include all pits, rectangular and circular.

Pits shall be provided with a surface treatment as shown on Standard Drawings 1440 and 1416, except as follows:

a) where stabilised sand backfill for the pit is extended to the surface and used as the surface treatment, it must comply with the dimensions shown on Standard Drawings 1440 and 1416 except that the stabilised sand must be 300 mm minimum depth, or

b) where the surrounding surface provides at least the same protection as the concrete surround shown on Standard Drawings 1440 and 1416, the surface may be extended in a continuous manner to surround and adjoin the pit.

The concrete surround will not be required if the pit is installed on a hard surface or on a median which is less than 1.5 m wide.

Precast concrete surrounds are acceptable.

Pits shall be provided with a surface treatment that blends with the surrounding surface.

In all cases, the surface treatment shall provide a smooth, free draining finish that will not present a trip hazard. Wherever possible, the surface treatment shall be sloped to direct water away from the pit.

13 Unused conduits

Unused conduits are defined as existing conduits located during the construction of the works or shown on the drawings which are no longer required.

All unused conduits shall be capped and glued (with easily removed adhesive) with a proprietary PVC conduit cap.

14 Supplementary requirements

The requirements of MRTS91 Conduits and Pits are varied by the supplementary requirements given in Clause 7 of Annexure MRTS91.1.
Appendix A: Conduits and pit layout

Figure 1 – Backbone and road crossing conduits