facilities. Overall this approach minimises ‘dead’ space and provides high visibility. It does require a wide transport corridor. In the case of Maroochydore, where the length of track requiring treatment is quite short, this disadvantage might not be severe.

This is consistent with the delineation of a wide transit boulevard with activated frontages proposed in the Maroochydore Centre Position Paper. Effective implementation of such an option will require acceptance by QR of the shared use of land within the envelope of the rail structure. An example of such sharing of space is the continuity of Kalinga Park under the Airtrain structure near Toombul in Brisbane.

Figure 7-5 shows an example of a centre median rail line.

Figure 7-5: Centre median rail line, Kuala Lumpur (source: Wikimedia Commons)

7.4.2 Pedestrian corridor or open space network

Where a continuous open space network is available, an elevated railway can be threaded through this space. Provided that passage under supports is not restricted, this can be an ideal way of ensuring the rail line is under effective surveillance.

This open space can be in the form of a pedestrian plaza or mall, as in the example below of the Sydney Monorail in Darling Harbour (Figure 7-6).
The major challenge that this approach faces is the need for appropriate size of open space. If the corridor is too narrow, then the land will be overshadowed by the rail corridor and become ‘dead space’. In the case of the Maroochydore CBD, the open space corridors have been located at the opposite side of the development from the rail to match natural water features and corridors. For this reason, this is unlikely to be a complete solution for Maroochydore. However, effective use of public space such as a plaza can be an important part of the design of the terminal station.

7.4.3 Attached to adjoining development

Single-sided development offers a rail alignment with street facing one side and direct building abutting on the other. As such provides some public facing space and some private facing space. The space under the rail structure could be used for pedestrian and cycle space or possibly developed for business purposes.

Street access also allows for the innovative use of land around and under the rail alignment itself.

7.4.4 Integrated within development

Traditional construction underneath rail viaducts have suffered from noise and vibration issues, which reduces the types of potential uses. Modern engineering allows for improved noise insulation which makes many more uses possible. The example in Figure 7-7 below is